Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol.4, e1000021 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ravasi, T., Wells, C. A. & Hume, D. A. Systems biology of transcription control in macrophages. Bioessays29, 1215–1226 (2007). ArticleCASPubMed Google Scholar
Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol.6, 183–195 (2006). ArticleCAS Google Scholar
Horton, J. D. & Shimomura, I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol.10, 143–150 (1999). ArticleCASPubMed Google Scholar
Kensler, T. W., Wakabayashi, N. & Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol.47, 89–116 (2007). ArticleCASPubMed Google Scholar
Iwakoshi, N. N., Lee, A. H. & Glimcher, L. H. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol. Rev.194, 29–38 (2003). ArticleCASPubMed Google Scholar
Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol.40, 519–561 (2000). ArticleCASPubMed Google Scholar
Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nature Immunol.7, 598–605 (2006). ArticleCAS Google Scholar
Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science309, 1854–1857 (2005). ArticleCASPubMed Google Scholar
Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science309, 1857–1861 (2005). ArticleCASPubMed Google Scholar
Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol.10, 437–443 (2009). This paper delineates a transcriptional circuitry in the LPS-inducible gene expression programme in macrophages. ArticleCAS Google Scholar
Friedman, A. D. Transcriptional control of granulocyte and monocyte development. Oncogene26, 6816–6828 (2007). ArticleCASPubMed Google Scholar
Valledor, A. F., Borras, F. E., Cullell-Young, M. & Celada, A. Transcription factors that regulate monocyte/macrophage differentiation. J. Leukoc. Biol.63, 405–417 (1998). ArticleCASPubMed Google Scholar
Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-α transcription factors. Proc. Natl Acad. Sci. USA94, 6746–6751 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature441, 173–178 (2006). ArticleCASPubMed Google Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). ArticleCASPubMed Google Scholar
Kearns, J. D. & Hoffmann, A. Integrating computational and biochemical studies to explore mechanisms in NF-κB signaling. J. Biol. Chem.284, 5439–5443 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell128, 669–681 (2007). ArticleCASPubMed Google Scholar
Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol.3, 69–75 (2002). One of the first papers to show how a specific histone modification is coupled to the upregulation of expression of a subset of LPS-inducible genes. ArticleCAS Google Scholar
Hazzalin, C. A. & Mahadevan, L. C. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol.3, e393 (2005). ArticleCASPubMedPubMed Central Google Scholar
Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature423, 659–663 (2003). ArticleCASPubMed Google Scholar
Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature423, 655–659 (2003). ArticleCASPubMed Google Scholar
Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell29, 69–80 (2008). ArticleCASPubMedPubMed Central Google Scholar
De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130, 1083–1094 (2007). This paper shows how a histone-modifying enzyme functions in the regulation of a subset of LPS-inducible genes. ArticleCASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCASPubMed Google Scholar
Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell138, 129–145 (2009). ArticleCASPubMedPubMed Central Google Scholar
Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem.71, 247–273 (2002). ArticleCASPubMed Google Scholar
Lai, D. et al. Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling. Proc. Natl Acad. Sci. USA106, 1169–1174 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ramirez-Carrozzi, V. R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev.20, 282–296 (2006). This paper identifies distinct classes of LPS-inducible inflammatory genes based on the requirement for signal-dependent chromatin remodelling. ArticleCASPubMedPubMed Central Google Scholar
Kayama, H. et al. Class-specific regulation of pro-inflammatory genes by MyD88 pathways and IκBζ. J. Biol. Chem.283, 12468–12477 (2008). ArticleCASPubMed Google Scholar
Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell138, 114–128 (2009). This paper shows that many of the regulatory properties of rapidly inducible inflammatory genes are associated with their GC-rich promoters. CASPubMedPubMed Central Google Scholar
Lomvardas, S. & Thanos, D. Modifying gene expression programs by altering core promoter chromatin architecture. Cell110, 261–271 (2002). ArticleCASPubMed Google Scholar
Natoli, G., Saccani, S., Bosisio, D. & Marazzi, I. Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nature Immunol.6, 439–445 (2005). ArticleCAS Google Scholar
Herschman, H. R. Primary response genes induced by growth factors and tumor promoters. Annu. Rev. Biochem.60, 281–319 (1991). ArticleCASPubMed Google Scholar
Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A. & Wong, J. A role for cofactor–cofactor and cofactor–histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J.22, 2146–2155 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature430, 218–222 (2004). ArticleCASPubMed Google Scholar
Leung, T. H., Hoffmann, A. & Baltimore, D. One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. Cell118, 453–464 (2004). ArticleCASPubMed Google Scholar
Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell122, 707–721 (2005). This paper describes signal-specific and gene-specific inhibition of inflammatory gene expression by nuclear receptors. ArticleCASPubMedPubMed Central Google Scholar
Wietek, C., Miggin, S. M., Jefferies, C. A. & O'Neill, L. A. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-κ. J. Biol. Chem.278, 50923–50931 (2003). ArticleCASPubMed Google Scholar
Chen-Park, F. E., Huang, D. B., Noro, B., Thanos, D. & Ghosh, G. The κB DNA sequence from the HIV long terminal repeat functions as an allosteric regulator of HIV transcription. J. Biol. Chem.277, 24701–24708 (2002). ArticleCASPubMed Google Scholar
Ghisletti, S. et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev.23, 681–693 (2009). This paper shows repression of partially overlapping sets of inflammatory genes by two co-repressors. ArticleCASPubMedPubMed Central Google Scholar
Huang, W., Ghisletti, S., Perissi, V., Rosenfeld, M. G. & Glass, C. K. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol. Cell35, 48–57 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, S. et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl Acad. Sci. USA101, 14461–14466 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol.5, 446–458 (2005). ArticleCAS Google Scholar
Thanos, D. & Maniatis, T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol. Cell Biol.15, 152–164 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell124, 315–329 (2006). ArticleCASPubMed Google Scholar
Bates, P. W. & Miyamoto, S. Expanded nuclear roles for IκBs. Sci. STKE2004, pe48 (2004). PubMed Google Scholar
Kuwata, H. et al. IκBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity24, 41–51 (2006). ArticleCASPubMed Google Scholar
Wessells, J. et al. BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J. Biol. Chem.279, 49995–50003 (2004). ArticleCASPubMed Google Scholar
Carmody, R. J., Ruan, Q., Palmer, S., Hilliard, B. & Chen, Y. H. Negative regulation of Toll-like receptor signaling by NF-κB p50 ubiquitination blockade. Science317, 675–678 (2007). ArticleCASPubMed Google Scholar
Hirotani, T. et al. The nuclear IκB protein IκBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol.174, 3650–3657 (2005). ArticleCASPubMed Google Scholar
Kuwata, H. et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood102, 4123–4129 (2003). ArticleCASPubMed Google Scholar
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). ArticleCASPubMed Google Scholar
Murray, P. J. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl Acad. Sci. USA102, 8686–8691 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wall, E. A. et al. Suppression of LPS-induced TNF-α production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci. Signal2, ra28 (2009). ArticleCASPubMedPubMed Central Google Scholar
Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev. Immunol.6, 44–55 (2006). ArticleCAS Google Scholar
Giles, K. M. et al. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol.167, 976–986 (2001). ArticleCASPubMed Google Scholar
Lee, C. H. et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science302, 453–457 (2003). ArticleCASPubMed Google Scholar
Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell136, 62–74 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kincaid, E. Z. & Ernst, J. D. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-γ without inhibiting STAT1 function. J. Immunol.171, 2042–2049 (2003). ArticleCASPubMed Google Scholar
Hamon, M. A. & Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe4, 100–109 (2008). ArticleCASPubMed Google Scholar
Leng, J., Butcher, B. A., Egan, C. E., Abdallah, D. S. & Denkers, E. Y. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J. Immunol.182, 489–497 (2009). ArticleCASPubMed Google Scholar
Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458, 223–227 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell32, 129–139 (2008). ArticleCASPubMedPubMed Central Google Scholar
Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nature Immunol.9, 839–845 (2008). ArticleCAS Google Scholar
Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell136, 629–641 (2009). ArticleCASPubMed Google Scholar
Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol.9, 353–359 (2008). ArticleCAS Google Scholar
Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunol.10, 281–288 (2009). ArticleCAS Google Scholar
Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature458, 1185–1190 (2009). ArticleCASPubMed Google Scholar
Foster, S. L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory response. Clin. Immunol.130, 7–15 (2009). ArticleCASPubMed Google Scholar
El Gazzar, M., Yoza, B. K., Hu, J. Y., Cousart, S. L. & McCall, C. E. Epigenetic silencing of tumor necrosis factor α during endotoxin tolerance. J. Biol. Chem.282, 26857–26864 (2007). ArticleCASPubMed Google Scholar
Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature447, 972–978 (2007). ArticleCASPubMed Google Scholar
Chan, C., Li, L., McCall, C. E. & Yoza, B. K. Endotoxin tolerance disrupts chromatin remodeling and NF-κB transactivation at the IL-1β promoter. J. Immunol.175, 461–468 (2005). ArticleCASPubMed Google Scholar
Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature447, 1116–1120 (2007). ArticleCASPubMedPubMed Central Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell131, 58–69 (2007). ArticleCASPubMed Google Scholar
Lis, J. T. Imaging Drosophila gene activation and polymerase pausing in vivo. Nature450, 198–202 (2007). ArticleCASPubMed Google Scholar
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell130, 77–88 (2007). This study shows that RNA polymerase II is paused at the promoters of many mammalian genes across the genome. ArticleCASPubMedPubMed Central Google Scholar
Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet.39, 1507–1511 (2007). ArticleCASPubMed Google Scholar
Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet.39, 1512–1516 (2007). ArticleCASPubMed Google Scholar