Contents
§25.14(i) Definition
§25.14(ii) Properties
§25.14(i) Definition
25.14.1
Φ(z,s,a)≡∑n=0∞zn(a+n)s,
|z
<1; ℜs>1,
ⓘ Defines: Φ(z,s,a): Lerch’s transcendent Symbols: ≡: equals by definition ,ℜ: real part ,n: nonnegative integer ,a: real or complex parameter ,s: complex variable andz: complex variable Keywords: definition , infinite series , series representation Source: Erdélyi et al. (1953a , (1.11.1), p. 27) Referenced by: (25.14.2) ,(25.14.3) ,§25.14(ii) ,§25.14 ,Erratum (V1.0.21) for Equation (25.14.1) Permalink: http://dlmf.nist.gov/25.14.E1 Encodings: TeX , pMML , png Clarification (effective with 1.0.21): The previous constraint a≠0,−1,−2,…, was removed. A clarification regarding the correct constraints for Lerch’s transcendentΦ(z,s,a) has been added in the text immediately below. See also: Annotations for §25.14(i) ,§25.14 andCh.25
If s is not an integer then |pha|<π; if s is a positive integer then a≠0,−1,−2,…; if s is a non-positive integer then a can be any complex number. For other values of z, Φ(z,s,a) is defined by analytic continuation. This is the notation used in Erdélyi et al. (1953a , p. 27).Lerch (1887 ) used𝔎(a,x,s)=Φ(e2πix,s,a).
The Hurwitz zeta function ζ(s,a) (§25.11 ) and the polylogarithm Lis(z) (§25.12(ii) ) are special cases:
25.14.2
ζ(s,a)=Φ(1,s,a),
ℜs>1, a≠0,−1,−2,…,
ⓘ Symbols: ζ(s,a): Hurwitz zeta function ,Φ(z,s,a): Lerch’s transcendent ,ℜ: real part ,a: real or complex parameter ands: complex variable Keywords: specialization Proof sketch: Derivable from (25.11.1 ), (25.14.1 ). Permalink: http://dlmf.nist.gov/25.14.E2 Encodings: TeX , pMML , png See also: Annotations for §25.14(i) ,§25.14 andCh.25
25.14.3
Lis(z)=zΦ(z,s,1),
ℜs>1, |z
≤1.
ⓘ Symbols: Φ(z,s,a): Lerch’s transcendent ,Lis(z): polylogarithm ,ℜ: real part ,s: complex variable andz: complex variable Keywords: specialization Proof sketch: Derivable from (25.12.10 ) and (25.14.1 ). Referenced by: (25.12.12) Permalink: http://dlmf.nist.gov/25.14.E3 Encodings: TeX , pMML , png See also: Annotations for §25.14(i) ,§25.14 andCh.25
25.14.3_1
zaΦ(z,s,a)=Γ(1−s)(−lnz)s−1+∑n=0∞ζ(s−n,a)(lnz)nn!,
|lnz
<2π; s≠1,2,3,…, a≠0,−1,−2,….
ⓘ Symbols: Γ(z): gamma function ,ζ(s,a): Hurwitz zeta function ,Φ(z,s,a): Lerch’s transcendent ,π: the ratio of the circumference of a circle to its diameter ,!: factorial (as in n!) ,lnz: principal branch of logarithm function ,n: nonnegative integer ,a: real or complex parameter ,s: complex variable andz: complex variable Source: Erdélyi et al. (1953a , (1.11.8), p. 29) Referenced by: §25.14(i) ,Erratum (V1.2.1) for §25.14(i) Permalink: http://dlmf.nist.gov/25.14.E3_1 Encodings: TeX , pMML , png Addition (effective with 1.2.1): This equation was added. See also: Annotations for §25.14(i) ,§25.14 andCh.25
If s=m a positive integer then
25.14.3_2
zaΦ(z,m,a)=∑′n=0′∞′ζ(m−n,a)(lnz)nn!+(lnz)m−1(m−1)!(ψ(m)−ψ(a)−ln(−lnz)),
|lnz
<2π; m=2,3,4,…, a≠0,−1,−2,….
ⓘ Symbols: ζ(s,a): Hurwitz zeta function ,Φ(z,s,a): Lerch’s transcendent ,π: the ratio of the circumference of a circle to its diameter ,ψ(z): psi (or digamma) function ,!: factorial (as in n!) ,lnz: principal branch of logarithm function ,m: nonnegative integer ,n: nonnegative integer ,a: real or complex parameter andz: complex variable Source: Erdélyi et al. (1953a , (1.11.9), p. 30) Referenced by: §25.14(i) ,Erratum (V1.2.1) for §25.14(i) Permalink: http://dlmf.nist.gov/25.14.E3_2 Encodings: TeX , pMML , png Addition (effective with 1.2.1): This equation was added. See also: Annotations for §25.14(i) ,§25.14 andCh.25
Here the prime signifies that the term for n=m−1 is to be omitted. In the case s=1 we have
25.14.3_3
aΦ(z,1,a)=F(a,1;a+1;z),
|z
<1.
ⓘ Symbols: F(a,b;c;z) or F(a,bc;z): =F12(a,b;c;z)Gauss’ hypergeometric function ,Φ(z,s,a): Lerch’s transcendent ,a: real or complex parameter andz: complex variable Source: Erdélyi et al. (1953a , (1.11.10), p. 30) Referenced by: §25.14(i) ,Erratum (V1.2.1) for §25.14(i) Permalink: http://dlmf.nist.gov/25.14.E3_3 Encodings: TeX , pMML , png Addition (effective with 1.2.1): This equation was added. See also: Annotations for §25.14(i) ,§25.14 andCh.25
For hypergeometric function F see 15.2(i) .
§25.14(ii) PropertiesWith the conditions of (25.14.1 ) and m=1,2,3,…,
25.14.4
Φ(z,s,a)=zmΦ(z,s,a+m)+∑n=0m−1zn(a+n)s.
25.14.5
Φ(z,s,a)=1Γ(s)∫0∞xs−1e−ax1−ze−xdx,
ℜs>1, ℜa>0 if z=1;ℜs>0, ℜa>0 if z∈ℂ∖[1,∞).
ⓘ Symbols: Γ(z): gamma function ,Φ(z,s,a): Lerch’s transcendent ,[a,b): half-closed interval ,ℂ: complex plane ,dx: differential of x ,∈: element of ,e: base of natural logarithm ,∫: integral ,ℜ: real part ,∖: set subtraction ,x: real variable ,a: real or complex parameter ,s: complex variable andz: complex variable Keywords: improper integral , integral representation Source: Erdélyi et al. (1953a , (1.11.3), p. 27) Referenced by: Erratum (V1.1.4) for Equation (25.14.5) Permalink: http://dlmf.nist.gov/25.14.E5 Encodings: TeX , pMML , png See also: Annotations for §25.14(ii) ,§25.14 andCh.25
25.14.6
Φ(z,s,a)=12a−s+∫0∞zx(a+x)sdx−2∫0∞sin(xlnz−sarctan(x/a))(a2+x2)s/2(e2πx−1)dx,
ℜa>0 if |z
<1;ℜs>1, ℜa>0 if
z
=1.
ⓘ Symbols: Φ(z,s,a): Lerch’s transcendent ,π: the ratio of the circumference of a circle to its diameter ,dx: differential of x ,e: base of natural logarithm ,∫: integral ,arctanz: arctangent function ,lnz: principal branch of logarithm function ,ℜ: real part ,sinz: sine function ,x: real variable ,a: real or complex parameter ,s: complex variable andz: complex variable Keywords: improper integral , integral representation Source: Erdélyi et al. (1953a , (1.11.4), p. 28) Notes: For the case |z
<1 see Erdélyi et al. (1953a , (1.11.4), p. 28). In the case
z
=1 one checks that the first integral converges absolutely iff ℜs>1. Referenced by: Erratum (V1.1.4) for Equation (25.14.6) Permalink: http://dlmf.nist.gov/25.14.E6 Encodings: TeX , pMML , png Clarification (effective with 1.1.4): The constraint which originally read “ℜs>0 if
z
<1; ℜs>1 if
Lerch’s transformation formula
25.14.7
Φ(z,s,a)=i(2π)s−1zaΓ(1−s)(e−πis/2Φ(e−2πia,1−s,lnz2πi)−eπi(2a+(s/2))Φ(e2πia,1−s,1−lnz2πi)).
For these and further properties see Erdélyi et al. (1953a , pp. 27–31).
25.14.8
Φ(−z,s,a)=12πi∫σ−i∞σ+i∞Γ(1+t)Γ(−t)zt(a+t)sdt,
|argz
<π, ℜa>0,
ⓘ Symbols: Γ(z): gamma function ,Φ(z,s,a): Lerch’s transcendent ,π: the ratio of the circumference of a circle to its diameter ,dx: differential of x ,i: imaginary unit ,∫: integral ,ℜ: real part ,a: real or complex parameter ,s: complex variable andz: complex variable Source: Olde Daalhuis (2024 , (1.5)) Referenced by: §25.14(ii) ,Erratum (V1.2.1) for §25.14(ii) Permalink: http://dlmf.nist.gov/25.14.E8 Encodings: TeX , pMML , png Addition (effective with 1.2.1): This equation was added. See also: Annotations for §25.14(ii) ,§25.14 andCh.25
with max(−ℜa,−1)<σ<0. This Mellin–Barnes integral representation is used in Olde Daalhuis (2024 ) to obtain large |z| asymptotic approximations forΦ(−z,s,a). In the special case s=m an integer these asymptotic approximations simplify
25.14.9
Φ(−z,m,a)=−πza∑n=0m−1bn(lnz)m−n−1Γ(m−n)−∑n=1∞(−z)−n(a−n)m,
|argz
<π.
ⓘ Symbols: Γ(z): gamma function ,Φ(z,s,a): Lerch’s transcendent ,π: the ratio of the circumference of a circle to its diameter ,lnz: principal branch of logarithm function ,m: nonnegative integer ,n: nonnegative integer ,a: real or complex parameter andz: complex variable Source: Olde Daalhuis (2024 , (1.6)) Referenced by: §25.14(ii) ,Erratum (V1.2.1) for §25.14(ii) Permalink: http://dlmf.nist.gov/25.14.E9 Encodings: TeX , pMML , png Addition (effective with 1.2.1): This equation was added. See also: Annotations for §25.14(ii) ,§25.14 andCh.25
The first sum is zero in the case that m is a non-positive integer. In the case that m is a positive integer we have the additional constraint a≠1,2,3,…. The coefficients bn are the Taylor coefficients of csc(π(t−a)) about t=0.
The small and large a asymptotics is discussed in Cai and López (2019 ), Ferreira and López (2004 ), Paris (2016 ), and the asymptotics as ℜs→−∞ is discussed in Navas et al. (2013 ).