The Early Eukaryotic Fossil Record (original) (raw)
Margulis L. Symbiosis in Cell Evolution. WH Freeman: San Francisco, 1981. Google Scholar
Knoll AH. Life on a Young Planet. Princeton: Princeton University Press, 2003:277. Google Scholar
Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature 1998; 392(6671):37–41. ArticlePubMedCAS Google Scholar
Moreira D, Lopez-Garcia P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J Mol Evol 1998; 47(5):517–530. ArticlePubMedCAS Google Scholar
Hartman H, Federov A. The origin of the eukaryotic cell: A genomic investigation. Proc Natl Acad Sci USA 2002; 99(3):1420–1425. ArticlePubMedCAS Google Scholar
Xu Y, Glansdorff N. Was our ancestor a hyperthermophilic procaryote? Comp Biochem Physiol A Mol Integr Physiol 2002; 133:677–688. ArticlePubMed Google Scholar
Dyall SD, Johnson PJ. Origins of hydrogenosomes and mitochondria: Evolution and organelle biogenesis. Curr Opin Microbiol 2003:404–411. Google Scholar
Simpson AGB, Roger AJ. The real kingdoms of eukaryotes. Curr Biol 2004; 14(17):693–696. ArticleCAS Google Scholar
Katz LA. Changing perspectives on the origin of eukaryotes. Trends Ecol Evol 1998; 13(12):493–497. Article Google Scholar
McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol 2001; 37:951–959. Article Google Scholar
Berney C, Fahrni J, Pawlowski P. How many novel eukaryotic ‘kingdoms’? pitfalls and limitations of environmental DNA surveys. BMC Biol 2004; 2:13 ArticlePubMed Google Scholar
Keeling PJ, Burger G, Durnford DG et al. The tree of eukaryotes. Trends Ecol Evol 2005; 20(12):670–676. ArticlePubMed Google Scholar
Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 2005; 436:1113–1118. ArticlePubMedCAS Google Scholar
Javaux EJ, Knoll AH, Walter MR. Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 2003; 33:75–94. ArticlePubMedCAS Google Scholar
Porter SM. Early eukaryotic diversification. In: Lipps J, Waggoner B, eds. Neoproterozoic-Cambrian Biological Revolutions. Paleontological Society Papers, 2004:10:35–50. Google Scholar
Knoll AH, Javaux EJ, Hewitt D et al. Eukaryotic organisms in Proterozoic Oceans. Proc R Soc Lond B Biol Sci (in press). Google Scholar
Rosing MT. C-13-depleted carbon micropartides in >3700-Ma sea-floor sedimentary rocks from western Greenland. Science 1999; 283:674–676. ArticlePubMedCAS Google Scholar
Shen Y, Buick R, Canfield DE. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 2001; 410:77–81. ArticlePubMedCAS Google Scholar
Hayes JM, Kaplan IR, Wedeking KW. Precambrian organic chemistry, preservation of the record. In: Schopf JW, ed. Earth’s Earliest Biosphere. Princeton University Press, 1983:93–134. Google Scholar
Moreira D, Lopez-Garcia P. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 2002; 10(l):31–38. ArticlePubMedCAS Google Scholar
Schulz HN, Brinkhoff T, Ferdelman TG et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 1999; 284:493–495. ArticlePubMedCAS Google Scholar
Brocks JJ, Logan GA, Buick R et al. Archean molecular fossils and the early rise of eukaryotes. Science 1999; 285:1033–1036. ArticlePubMedCAS Google Scholar
Brocks JJ, Buick R, Summons RE et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim Cosmochim Acta 2003; 67(22):4321–4335. ArticleCAS Google Scholar
Cavalier-Smith T. The neomuran origin of archaebacteria: The negibacteria root of the universal tree and bacteria megaclassification. International Int J Syst Evol Microbiol 2002; 52:7–76. CAS Google Scholar
Hedges SB, Blair JE, Venturi ML et al. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 2004; 4, (Art. No. 2). Google Scholar
Yoon HS, Hackett JD, Ciniglia C et al. A molecular time line for the origin of photosynthetic eukaryotes. Mol Biol Evol 2004; 21:809–818. ArticlePubMedCAS Google Scholar
Javaux EJ. Extreme life on Earth-past, present and possibly beyond. Res Microbiol 2006; 157:37–48. ArticlePubMed Google Scholar
Douzery EJP, Snell EA, Bapteste E et al. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA, 2004; 101:15386–15391. ArticlePubMedCAS Google Scholar
Pearson A, Budin M, Brocks J. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 2003; 100:15352–15357. ArticlePubMedCAS Google Scholar
Volkman JK. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org Geochem 2005; 36:139–159. ArticleCAS Google Scholar
Volkman JK. Sterols in microorganisms. Appl Microbiol Biotechnol 2003; 60:495–506. PubMedCAS Google Scholar
Raymond J, Blankenship RE. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2004; 2(4): 199–203. ArticleCAS Google Scholar
Canfield DE. A new model for Proterozoic ocean chemistry. Nature 1998; 396:450–453. ArticleCAS Google Scholar
Shen Y, Knoll AH, Walter MR. Evidence for low sulphate and deep water anoxia in a mid-Proterozoic marine basin. Nature 2003; 423:632–635. ArticlePubMedCAS Google Scholar
Kah LC, Lyons TM, Frank TD. Low marine sulphate and protracted oxygénation of the Proterozoic biosphere. Nature 2004; 431:834–838. ArticlePubMedCAS Google Scholar
Brocks JJ, Love GD, Summons RE et al. Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean. Nature 2005; 437:866–870. ArticlePubMedCAS Google Scholar
Li C, Peng P, Sheng GY et al. A molecular and isotopic geochemical study of Meso-to Neoproterozoic (1.73-0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Res 2003; 125(3–4):337–356. ArticleCAS Google Scholar
Javaux EJ, Knoll AH, Walter MR. Morphological and ecological complexity complexity in early eukaryotic ecosystems. Nature 2001; 412:66–69. ArticlePubMedCAS Google Scholar
Anbar A, Knoll AH. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 2002; 297:1137–1142. ArticlePubMedCAS Google Scholar
Peng PG, Sheng JF, Yan Y. Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China. Org Geochem 1998; 29:1321–1329. ArticleCAS Google Scholar
Moldowan JM, Jacobsen SR, Dahl J et al. Molecular fossils demonstrate Precambrian origins of dinoflagellates. In: Zhuralev AY, Riding R, eds. The Ecology of the Cambrian Radiation. New York: Columbia University Press, 2001:475–493. Google Scholar
Summons RE, Walter MR. Molecular fossils and microfossils from proterozoic sediments. Am J Sci 1990; 290–A:212–244. Google Scholar
Meng FW, Zhou CM, Yin LM et al. The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin Sci Bull 2005; 50:1230–1234. Article Google Scholar
Pratt LM, Summons RE, Hieshima GB. Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift. Geochem Cosmochim Acta 1991; 55:911–916. ArticleCAS Google Scholar
Summons RE, Thomas J, Maxwell JR et al. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochem Cosmochim Acta 1992; 56:2437–2444. ArticleCAS Google Scholar
Summons RE, Brassell SC, Eglinton G et al. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late proterozoic Walcott Member, Chuar Group, Grand-Canyon, Arizona. Geochem Cosmochim Acta 1988; 52(11):2625–2637. ArticleCAS Google Scholar
Kleeman G, Poralla K, Englert G et al. Tetrahymenol from the phototrophic bacterium Rhodopseudomonas palustris: First report of a gammacerane triterpene from a prokaryote. J Genet Microbiol 1990; 136:2551–2553. Google Scholar
Marshall CP, Javaux EJ, Knoll AH et al. Combined micro-Fourier transform infrared (FTIR) spectroscopy and Micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to palaeobiology. Precambrian Res 2005; 138:208–224. ArticleCAS Google Scholar
Javaux EJ, Marshall CP. A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol (in press). Google Scholar
Arouri K, Greenwood PF, Walter MR. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 1999; 30:1323–1337. ArticleCAS Google Scholar
Versteegh GJM, Blokker P. Resistant macromolecules of extant and fossil microalgae. Phycological Res 2004; 52:325–339. ArticleCAS Google Scholar
Yan Y, Liu Z. Significance of eukaryotic organisms in the microfossil flora of Changcheng System. Acta Micropalaeontologica Sinica 1993; 10:167–180. Google Scholar
Javaux EJ, Knoll AH, Walter MR. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2004; 2:121–132. Article Google Scholar
Hofmann HJ. Global distribution of the Proterozoic sphaeropmorph acritarch Valeria lophostriata (Jankauskas). Acta Micropaleontologica Sinica 1999; 16:215–224. Google Scholar
Yin L. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev Palaeobot Palynol 1997; 98:15–25. Article Google Scholar
Xiao S, Knoll AH, Kaufman AJ et al. Neoproterozoic fossils in Mesoproterozoic rocks? Precambrian Res 1997; 84:197–220. ArticleCAS Google Scholar
Prasad B, Asher R. Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Pre-Unconformity Sequence) of Ganga Basin, India. Paleontographica Indica 2001; 5:1–151. Google Scholar
Nagovitsin KE. Mikrofossilii i stratigrafiya verchnego Rifeya Yugo-Zapadnoi chasti Siberskoi Platformi. Ph.D. Thesis. RAS Siberian Branch, Institute of Geology, 2001:222. Google Scholar
Hofmann HJ, Jackson. Shale faciès microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. J Paleontol 1994; 68(4):Memoir 37–39. Google Scholar
Jankauskas TV. Mikrofossilii dokembriya SSSR (Precambrian microfossils of the USSR). Nauka Leningrad 1989:1–190. Google Scholar
Yan Y, Zhu S. Discovery of acanthomorphic acritarchs from the Baicaoping Formation in Yongi, Shanxi, and its geological significance. Acta Palaeontologica Sinica 1992; 9:267–282. Google Scholar
Kaufman AJ, Xiao S. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 2003; 425:279–282. ArticlePubMedCAS Google Scholar
Yin LM, Yuan XL, Meng FW et al. Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res 2005; l41(l–2):49–66. Google Scholar
Butterfield NJ, Knoll AH, Swett K. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 1990; 250:104–107. ArticlePubMedCAS Google Scholar
Butterfield NJ. Bangimorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicelluarity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 2000; 26:386–404. Article Google Scholar
Herman N. Organic world one billion years ago. Leningrad, Nauka: 1990. Google Scholar
Rainbird RH, Stern RA, Khudoley AK et al. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth and Planetary Sciences Letters 1998; 164:409–420. ArticleCAS Google Scholar
Woods KN, Knoll AH, Herman TN. Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: Confirmation and evolutionary implications. Geological Society of America Abstracts with Programs 1998; 30:A232. Google Scholar
Butterfield NJ. A vaucherian alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 2004; 30:231–252. Article Google Scholar
Xiao S, Zhang Y, Knoll AH. Three-dimensionally preservation of algae and animal embryos in a Neoproterozoic phosphate. Nature 1998; 391:553–558. ArticleCAS Google Scholar
Narbonne GM. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth and Planetary Sciences Letters 2005; 33:421–442. ArticleCAS Google Scholar
Butterfield NJ, Knoll AH, Swett N. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 1994; 34:1–84. Google Scholar
Porter SM, Knoll AH. Testate amoebae in the Neoproterozoic era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 2000; 26:360–385. Article Google Scholar
Porter SM, Meisterfeld R, Knoll AH. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol 2003; 77:409–429. Article Google Scholar
Baldauf SL, Roger AJ, Wenk-Siefert I et al. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000; 290:972–977. ArticlePubMedCAS Google Scholar
Bapteste E, Brinkmann H, Lee JA et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 2002; 99(3):1414–1419. ArticlePubMedCAS Google Scholar
Allison CW, Awramik SM. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Res 1989; 43:253–294. Article Google Scholar
Kaufman AJ, Knoll AH, Awramik SM. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions — Upper Tindir Group, northwestern Canada, as a test case. Geology 1992; 20:181–185. ArticlePubMedCAS Google Scholar
Moczydlowska M. Acritarch biostratigraphy of the lower cambrian and the precambrian-cambrian boundary in southeast Poland. Fossils and Strata 1991; 29:1–127. Google Scholar
Grey K. Ediacaran palynology of Australia. Australian Association Palaeontologists Memoir 2005; 31:1–432. Google Scholar
Xiao S, Knoll AH. Phosphatized embryos from the Neoproterozoic Doushantuo Formation. J Paleontol 2000; 74:767–788. Article Google Scholar
Grotzinger JP, Watters W, Knoll AH. Calcareous metazoans in thrombolitic bioherms of the terminal Proterozoic Nama Group, Namibia. Paleobiology 2000; 26:334–359. Article Google Scholar
Barfod GH, Albarède F, Knoll AH et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Sciences Letters 2002; 201(l):203–212. ArticleCAS Google Scholar
Xiao S, Knoll AH, Yuan X. Miaohephyton, a possible brown alga from the terminal Proterozoic Doushantuo Formation, China. J Paleontol 1998; 72:1072–1086. Google Scholar
Xiao S, Yuan X, Steiner M et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. J Paleontol 2002; 76:345–374. Article Google Scholar
Walter MR, Du R, Horodyski RJ. Coiled carbonaceous megafossils from the middle proterozoic of Jixian (Tianjin) and Montana. Am J Sci 1990; 290A:133–l48. Google Scholar
Walter MR, Oehler JH, Oehler DZ. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthichnites. J Paleontol 1976; 50:872–881. Google Scholar
Kumar S. Megafossils from the Mesoproterozoic Rohtas Formation (The Vindhyan Supergroup), Katni Area, Central India. Precambrian Res 1995; 72(3–4): 171–184. ArticleCAS Google Scholar
Sarangi S, Gopalan K, Kumar S. Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution. Precambrian Res 2004; 132(l–2):107–121. ArticleCAS Google Scholar
Han TM, Runnegar B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron Formation. Science 1992; 257:232–235. ArticlePubMedCAS Google Scholar
Schneider DA, Bickford ME, Cannon WF et al. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup; implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can J Earth Sci 2002; 39:999–1012. ArticleCAS Google Scholar
Samuelsson J, Butterfield NJ. Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: Stratigraphie and palaeobiological implications. Precambrian Res 2001; 107:235–251. ArticleCAS Google Scholar
Zhu S, Chen H. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science 1995; 270:620–622. ArticleCAS Google Scholar
Zhu SX, Sun SF, Huang XG et al. Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation (1 800 Ma) in the Yanshan range, North China. Chin Sci Bull 2000; 45(9):841–847. Article Google Scholar
Grey K, Williams IR. Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Res 1990; 46:307–327. Article Google Scholar
Horodyski R. Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana. J Paleontol 1982; 56:882–889. Google Scholar
Yochelson EL, Fedonkin MA. A new tissue-grade organism 1.5 billion years old from Montana. Proc Biol Soc Wash 2000; 113:843–847. Google Scholar
Hofmann HJ. Proterozoic carbonaceous films. In: Schopf JW, Klein C, eds. The Proterozoic biosphere: A multidisiciplinary study. Cambridge: Cambridge University Press, 1992:349–357. Google Scholar
Knoll AH. Archaean and proterozoic palaeontology. In: Jansonius J, McGregor DC, eds. Palynology: Principles and Applications, Vol. 1. American Association of Stratigraphic Palynologists Foundation. Publishers Press Salt Lake City, 1996:51–80. Google Scholar
Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002; 52:297–354. PubMedCAS Google Scholar
Bonner T. The origins of multicellularity. Integrative Biology 1998:27–36. Google Scholar
Cavalier-Smith T. Origins of the machinery of recombination and sex. Heredity 2002; 88:125–141. ArticlePubMedCAS Google Scholar
Knoll AH. Biomineralization and evolutionary history. Rev Mineralog Geochem 2003; 54:329–356. ArticleCAS Google Scholar
Xiao S, Knoll AH, Yuan X et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Botany 2004; 91:214–227. Article Google Scholar
Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA 2005; 102:9547–9552. ArticlePubMedCAS Google Scholar
Talyzina NM. Ultrastructure and morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingsö Group, Sweden. Precambrian Res 2000; 102:123–134. ArticleCAS Google Scholar
Schopf JW, Kudryavtsev AB. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 2005; 3:1–12. Article Google Scholar