Nanocarriers’ entry into the cell: relevance to drug delivery (original) (raw)
Black C, Gregoriadis G (1974) Intracellular fate and effect of liposome-entrapped actinomycin-d injected into rats. Biochem Soc Trans 2:869–871 CAS Google Scholar
Couvreur P, Tulkenst P, Roland M, Trouet A, Speiser P (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326 ArticlePubMedCAS Google Scholar
Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928 ArticlePubMedCAS Google Scholar
Aderem A, Underhill D (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623 ArticlePubMedCAS Google Scholar
Rabinovitch M (1995) Professional and nonprofessional phagocytes—an introduction. Trends Cell Biol 5:85–87 ArticlePubMedCAS Google Scholar
Vonarbourg A, Passirani C, Saulnier P, Benoit J (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373 ArticlePubMedCAS Google Scholar
Owens D, Peppas N (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102 ArticlePubMedCAS Google Scholar
Groves E, Dart A, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976 ArticlePubMedCAS Google Scholar
Vachon E, Martin R, Plumb J, Kwok V, Vandivier R, Glogauer M, Kapus A, Wang X, Chow C, Grinstein S, Downey G (2006) CD44 is a phagocytic receptor. Blood 107:4149–4158 ArticlePubMedCAS Google Scholar
Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721 ArticlePubMedCAS Google Scholar
Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, Griffiths G (1998) Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem 273:9842–9851 ArticlePubMedCAS Google Scholar
Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24 ArticlePubMedCAS Google Scholar
Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68 ArticlePubMedCAS Google Scholar
Gregoriadis G (1978) Liposomes in the therapy of lysosomal storage diseases. Nature 275:695–696 ArticlePubMedCAS Google Scholar
Grislain L, Couvreur P, Lenaerts V, Roland M, Deprezdecampeneere D, Speiser P (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15:335–345 ArticleCAS Google Scholar
Desjardins M, Griffiths G (2003) Phagocytosis: latex leads the way. Curr Opin Cell Biol 15:498–503 ArticlePubMedCAS Google Scholar
Korn ED, Weisman RA (1967) Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. J Cell Biol 34:219–227 ArticlePubMedCAS Google Scholar
Schäfer V, von Briesen H, Andreesen R, Steffan A, Royer C, Tröster S, Kreuter J, Rübsamen-Waigmann H (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HlV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 9:541–546 ArticlePubMed Google Scholar
Tabata Y, Ikada Y (1988) Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356–362 ArticlePubMedCAS Google Scholar
Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478 ArticlePubMedCAS Google Scholar
Heath TD, Lopez NG, Papahadjopoulos D (1985) The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-gamma-aspartate to cells in vitro. Biochim Biophys Acta 820:74–84 ArticlePubMedCAS Google Scholar
Allen TM, Austin GA, Chonn A, Lin L, Lee KC (1991) Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta Biomembranes 1061:56–64 ArticleCAS Google Scholar
Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78:620–628 PubMedCAS Google Scholar
Claesson PM, Blomberg E, Fröberg JC, Nylander T, Arnebrant T (1995) Protein interactions at solid surfaces. Adv Colloid Interface Sci 57:161–227 ArticleCAS Google Scholar
Devine DV, Wong K, Serrano K, Chonn A, Cullis PR (1994) Liposome-complement interactions in rat serum: implications for liposome survival studies. Biochim Biophys Acta 1191:43–51 ArticlePubMedCAS Google Scholar
Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:4234–4241 PubMedCAS Google Scholar
Moghimi SM, Muir IS, Illum L, Davis SS, Kolb-Bachofen V (1993) Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165 ArticlePubMedCAS Google Scholar
Scherphof G, Kamps J (1998) Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliver Rev 32:81–97 ArticleCAS Google Scholar
Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263 ArticlePubMedCAS Google Scholar
Norman ME, Williams P, Illum L (1992) Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials 13:841–849 ArticlePubMedCAS Google Scholar
Leroux J, De Jaeghere F, Anner B, Doelker E, Gurny R (1995) An investigation on the role of plasma and serum opsonins on the evternalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes. Life Sci 57:695–703 ArticlePubMedCAS Google Scholar
Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255 ArticlePubMedCAS Google Scholar
Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23:1313–1323 ArticlePubMedCAS Google Scholar
Jeon S, Lee J, Andrade J, De Gennes P (1991) Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142:149–158 ArticleCAS Google Scholar
van Oss CJ, Absolom DR, Neumann AW (1980) The “hydrophobic effect”: essentially a van der Waals interaction. Colloid Polym Sci 258:424–427 Article Google Scholar
Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603 ArticlePubMedCAS Google Scholar
Peracchia MT, Vauthier C, Desmaële D, Gulik A, Dedieu JC, Demoy M, d’Angelo J, Couvreur P (1998) Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm Res 15:550–556 ArticlePubMedCAS Google Scholar
Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50:1693–1700 PubMedCAS Google Scholar
Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450 ArticlePubMedCAS Google Scholar
Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341 ArticlePubMedCAS Google Scholar
Raz A, Bucana C, Fogler WE, Poste G, Fidler IJ (1981) Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res 41:487–494 PubMedCAS Google Scholar
Schwendener R, Lagocki P, Rahman Y (1984) The effects of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim Biophys Acta Biomembranes 772:93–101 ArticleCAS Google Scholar
Lee K, Hong K, Papahadjopoulos D (1992) Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta Biomembranes 1103:185–197 ArticleCAS Google Scholar
Rigotti A, Acton SL, Krieger M (1995) The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 270:16221–16224 ArticlePubMedCAS Google Scholar
Derksen JT, Morselt HW, Scherphof GL (1988) Uptake and processing of immunoglobulin-coated liposomes by subpopulations of rat liver macrophages. Biochim Biophys Acta 971:127–136 PubMedCAS Google Scholar
Betageri GV, Black CD, Szebeni J, Wahl LM, Weinstein JN (1993) Fc-receptor-mediated targeting of antibody-bearing liposomes containing dideoxycytidine triphosphate to human monocyte/macrophages. J Pharm Pharmacol 45:48–53 PubMedCAS Google Scholar
Kole L, Sarkar K, Mahato SB, Das PK (1994) Neoglycoprotein conjugated liposomes as macrophage specific drug carrier in the therapy of leishmaniasis. Biochem Biophys Res Commun 200:351–358 ArticlePubMedCAS Google Scholar
Yu B, Hailman E, Wright SD (1997) Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. J Clin Invest 99:315–324 ArticlePubMedCAS Google Scholar
Beningo KA, Wang Y (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856 PubMedCAS Google Scholar
Sun X, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, Wooley KL (2005) An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6:2541–2554 ArticlePubMedCAS Google Scholar
Guo LSS (2001) Amphotericin B colloidal dispersion: an improved antifungal therapy. Adv Drug Deliv Rev 47:149–163 ArticlePubMedCAS Google Scholar
Larabi M, Yardley V, Loiseau PM, Appel M, Legrand P, Gulik A, Bories C, Croft SL, Barratt G (2003) Toxicity and antileishmanial activity of a new stable lipid suspension of amphotericin B. Antimicrob Agents Chemother 47:3774–3779 ArticlePubMedCAS Google Scholar
Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456 ArticleCAS Google Scholar
Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934 ArticlePubMedCAS Google Scholar
Lenaerts V, Nagelkerke JF, Van Berkel TJ, Couvreur P, Grislain L, Roland M, Speiser P (1984) In vivo uptake of polyisobutyl cyanoacrylate nanoparticles by rat liver Kupffer, endothelial, and parenchymal cells. J Pharm Sci 73:980–982 ArticlePubMedCAS Google Scholar
Chiannilkulchai N, Driouich Z, Benoit JP, Parodi AL, Couvreur P (1989) Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastases. Sel Cancer Ther 5:1–11 PubMedCAS Google Scholar
Chiannilkulchai N, Ammoury N, Caillou B, Devissaguet J, Couvreur P (1990) Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 26:122–126 ArticlePubMedCAS Google Scholar
Colin de Verdière A, Dubernet C, Nemati F, Poupon MF, Puisieux F, Couvreur P (1994) Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother Pharmacol 33:504–508 PubMed Google Scholar
de Verdière AC, Dubernet C, Némati F, Soma E, Appel M, Ferté J, Bernard S, Puisieux F, Couvreur P (1997) Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 76:198–205 PubMed Google Scholar
Kattan J, Droz JP, Couvreur P, Marino JP, Boutan-Laroze A, Rougier P, Brault P, Vranckx H, Grognet JM, Morge X (1992) Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 10:191–199 ArticlePubMedCAS Google Scholar
Amselem S, Gabizon A, Barenholz Y (1990) Optimization and upscaling of doxorubicin-containing liposomes for clinical use. J Pharm Sci 79:1045–1052 ArticlePubMedCAS Google Scholar
Gabizon A, Peretz T, Sulkes A, Amselem S, Ben-Yosef R, Ben-Baruch N, Catane R, Biran S, Barenholz Y (1989) Systemic administration of doxorubicin-containing liposomes in cancer patients: a phase I study. Eur J Cancer Clin Oncol 25:1795–1803 ArticlePubMedCAS Google Scholar
Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97:2405–2425 ArticlePubMedCAS Google Scholar
Adler-Moore J, Proffitt RT (2002) AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother 49(Suppl 1):21–30 PubMedCAS Google Scholar
Gaspar R, Préat V, Opperdoes FR, Roland M (1992) Macrophage activation by polymeric nanoparticles of polyalkylcyanoacrylates: activity against intracellular Leishmania donovani associated with hydrogen peroxide production. Pharm Res 9:782–787 ArticlePubMedCAS Google Scholar
Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB, Maitra A, Basu MK (2005) Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target 13:161–171 ArticlePubMedCAS Google Scholar
Salem II, Flasher DL, Düzgüneş N (2005) Liposome-encapsulated antibiotics. Methods Enzymol 391:261–291 ArticlePubMedCAS Google Scholar
Fielding RM, Lewis RO, Moon-McDermott L (1998) Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome). Pharm Res 15:1775–1781 ArticlePubMedCAS Google Scholar
Donald PR, Sirgel FA, Venter A, Smit E, Parkin DP, Van de Wal BW, Mitchison DA (2001) The early bactericidal activity of a low-clearance liposomal amikacin in pulmonary tuberculosis. J Antimicrob Chemother 48:877–880 ArticlePubMedCAS Google Scholar
Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A (1991) Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother 35:770–772 PubMedCAS Google Scholar
Youssef M, Fattal E, Alonso MJ, Roblot-Treupel L, Sauzières J, Tancrède C, Omnès A, Couvreur P, Andremont A (1988) Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrob Agents Chemother 32:1204–1207 PubMedCAS Google Scholar
Bender AR, von Briesen H, Kreuter J, Duncan IB, Rübsamen-Waigmann H (1996) Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 40:1467–1471 PubMedCAS Google Scholar
Löbenberg R, Araujo L, von Briesen H, Rodgers E, Kreuter J (1998) Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Release 50:21–30 ArticlePubMed Google Scholar
Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G (2001) Targeting of 3′-azido 3′-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 18:467–473 ArticlePubMedCAS Google Scholar
Hillaireau H, Le Doan T, Appel M, Couvreur P (2006) Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release 116:346–352 ArticlePubMedCAS Google Scholar
Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758 ArticlePubMedCAS Google Scholar
Kanaseki T, Kadota K (1969) The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J Cell Biol 42:202–220 ArticlePubMedCAS Google Scholar
Matter K, Mellman I (1994) Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol 6:545–554 ArticlePubMedCAS Google Scholar
Jones A, Shusta E (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771 ArticlePubMedCAS Google Scholar
Strømhaug PE, Berg TO, Gjøen T, Seglen PO (1997) Differences between fluid-phase endocytosis (pinocytosis) and receptor-mediated endocytosis in isolated rat hepatocytes. Eur J Cell Biol 73:28–39 PubMed Google Scholar
Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612 ArticlePubMedCAS Google Scholar
Racoosin EL, Swanson JA (1992) M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci 102:867–880 PubMedCAS Google Scholar
Zauner W, Farrow NA, Haines AMR (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 71:39–51 ArticlePubMedCAS Google Scholar
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res 14:1568–1573 ArticlePubMedCAS Google Scholar
Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845 ArticlePubMedCAS Google Scholar
Qaddoumi M, Ueda H, Yang J, Davda J, Labhasetwar V, Lee V (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21:641–648 ArticlePubMedCAS Google Scholar
Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR (1996) Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48:1147–1152 PubMedCAS Google Scholar
Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169 ArticlePubMedCAS Google Scholar
Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884 ArticlePubMedCAS Google Scholar
Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–443 ArticlePubMedCAS Google Scholar
Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T (2005) Uptake and Transport Of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068 ArticlePubMedCAS Google Scholar
Huang M, Ma Z, Khor E, Lim L (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19:1488–1494 ArticlePubMedCAS Google Scholar
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32 ArticlePubMedCAS Google Scholar
Ropert C, Malvy C, Couvreur P (1993) Inhibition of the Friend retrovirus by antisense oligonucleotides encapsulated in liposomes: mechanism of action. Pharm Res 10:1427–1433 ArticlePubMedCAS Google Scholar
Ellens H, Bentz J, Szoka FC (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23:1532–1538 ArticlePubMedCAS Google Scholar
Drummond DC, Zignani M, Leroux J (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460 ArticlePubMedCAS Google Scholar
Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728 ArticlePubMedCAS Google Scholar
Straubinger RM, Düzgünes N, Papahadjopoulos D (1985) pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179:148–154 ArticlePubMedCAS Google Scholar
Ropert C, Lavignon M, Dubernet C, Couvreur P, Malvy C (1992) Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem Biophys Res Commun 183:879–885 ArticlePubMedCAS Google Scholar
Connor J, Norley N, Huang L (1986) Biodistribution of pH-sensitive immunoliposomes. Biochim Biophys Acta 884:474–481 PubMedCAS Google Scholar
Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561 PubMedCAS Google Scholar
Simberg D, Weisman S, Talmon Y, Barenholz Y (2004) DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 21:257–317 ArticlePubMedCAS Google Scholar
Demeneix B, Hassani Z, Behr J (2004) Towards multifunctional synthetic vectors. Curr Gene Ther 4:445–455 PubMedCAS Google Scholar
Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301 ArticlePubMedCAS Google Scholar
Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36 CAS Google Scholar
Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7:992–1009 ArticlePubMedCAS Google Scholar
Behrens I, Pena AIV, Alonso MJ, Kissel T (2002) Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19:1185–1193 ArticlePubMedCAS Google Scholar
Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G (2007) Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28:2233–2243 ArticlePubMedCAS Google Scholar
Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78:15–24 ArticlePubMedCAS Google Scholar
Calvo P, Vila-Jato JL, Alonso MJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50 ArticleCAS Google Scholar
Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe M, Couvreur P, Vassal G (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928–936 ArticlePubMedCAS Google Scholar
Garcia-Garcia E, Gil S, Andrieux K, Desmaële D, Nicolas V, Taran F, Georgin D, Andreux JP, Roux F, Couvreur P (2005) A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 62:1400–1408 ArticlePubMedCAS Google Scholar
Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P (2007) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64:356–364 ArticlePubMedCAS Google Scholar
Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P (2007) Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8:793–799 ArticlePubMedCAS Google Scholar
Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81 ArticlePubMedCAS Google Scholar
Olivier J, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:1836–1842 ArticlePubMedCAS Google Scholar
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416 ArticlePubMedCAS Google Scholar
Gillies ER, Goodwin AP, Fréchet JMJ (2004) Acetals as pH-sensitive linkages for drug delivery. Bioconjug Chem 15:1254–1263 ArticlePubMedCAS Google Scholar
Gillies ER, Fréchet JMJ (2005) pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 16:361–368 ArticlePubMedCAS Google Scholar
Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16:122–130 ArticlePubMedCAS Google Scholar
Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6:2651–2663 ArticlePubMedCAS Google Scholar
Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146 ArticlePubMedCAS Google Scholar
Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401 PubMedCAS Google Scholar
Dauty E, Remy J, Zuber G, Behr J (2002) Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjug Chem 13:831–839 ArticlePubMedCAS Google Scholar
Sabharanjak S, Mayor S (2004) Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 56:1099–1109 ArticlePubMedCAS Google Scholar
Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, D’Angelo J, Cattel L, Couvreur P (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464 ArticlePubMedCAS Google Scholar
Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1233:134–144 ArticlePubMed Google Scholar
Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192 ArticlePubMedCAS Google Scholar
Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21:8852–8857 ArticlePubMedCAS Google Scholar
Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103:405–418 ArticlePubMedCAS Google Scholar
Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587 ArticlePubMedCAS Google Scholar
Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2:373–383 ArticlePubMedCAS Google Scholar
Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y, Yan Z, Li Y (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288:361–368 ArticlePubMedCAS Google Scholar
Huwyler J, Yang J, Pardridge WM (1997) Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282:1541–1546 PubMedCAS Google Scholar
Cerletti A, Drewe J, Fricker G, Eberle AN, Huwyler J (2000) Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J Drug Target 8:435–446 ArticlePubMedCAS Google Scholar
Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J Pharmacol Exp Ther 292:1048–1052 PubMedCAS Google Scholar
Maruyama K, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M (1997) Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 413:177–180 ArticlePubMedCAS Google Scholar
Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511 ArticlePubMedCAS Google Scholar
Schiffelers RM, Koning GA, ten Hagen TLM, Fens MHAM, Schraa AJ, Janssen APCA, Kok RJ, Molema G, Storm G (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122 ArticlePubMedCAS Google Scholar
Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR (2006) Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 317:1161–1169 ArticlePubMedCAS Google Scholar
Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, Koval M (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609 ArticlePubMedCAS Google Scholar
Muro S, Schuchman EH, Muzykantov VR (2006) Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther 13:135–141 ArticlePubMedCAS Google Scholar
Christofidou-Solomidou M, Pietra GG, Solomides CC, Arguiris E, Harshaw D, Fitzgerald GA, Albelda SM, Muzykantov VR (2000) Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs. Am J Physiol Lung Cell Mol Physiol 278:L794–L805 PubMedCAS Google Scholar
Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558 ArticlePubMedCAS Google Scholar
Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414 ArticlePubMedCAS Google Scholar
Yagi N, Yano Y, Hatanaka K, Yokoyama Y, Okuno H (2007) Synthesis and evaluation of a novel lipid-peptide conjugate for functionalized liposome. Bioorg Med Chem Lett 17:2590–2593 ArticlePubMedCAS Google Scholar
Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118:216–224 ArticlePubMedCAS Google Scholar
Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 109:299–316 ArticlePubMedCAS Google Scholar
Nori A, Jensen KD, Tijerina M, Kopecková P, Kopecek J (2003) Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 14:44–50 ArticlePubMedCAS Google Scholar
Salnikov V, Lukyanenko Y, Frederick C, Lederer W, Lukyanenko V (2007) Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J 92:1058–1071 ArticlePubMedCAS Google Scholar
Choi S, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262 ArticlePubMedCAS Google Scholar
Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari J (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395 ArticlePubMedCAS Google Scholar
Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701 ArticlePubMedCAS Google Scholar
de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16:1176–1180 ArticlePubMedCAS Google Scholar
Lee ES, Na K, Bae YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5:325–329 ArticlePubMedCAS Google Scholar
Kale AA, Torchilin VP (2007) Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15:538–545 ArticlePubMedCAS Google Scholar
Devika Chithrani B, Ghazani A, Chan W (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668 ArticlePubMedCAS Google Scholar
Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16:1450–1458 ArticlePubMedCAS Google Scholar
Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618 ArticlePubMedCAS Google Scholar
Gratton SEA, Napier ME, Ropp PA, Tian S, Desimone JM (2008) Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of print particles. Pharm Res 25:2845–2852 ArticlePubMedCAS Google Scholar
Xu ZP, Niebert M, Porazik K, Walker TL, Cooper HM, Middelberg APJ, Gray PP, Bartlett PF, Lu GQM (2008) Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release 130:86–94 ArticlePubMedCAS Google Scholar
Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322 PubMedCAS Google Scholar
Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109 PubMedCAS Google Scholar
Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767 ArticlePubMedCAS Google Scholar
Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20:417–422 ArticlePubMedCAS Google Scholar
Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M, Yanagie H (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18:1042–1048 ArticlePubMedCAS Google Scholar
Nan A, Ghandehari H, Hebert C, Siavash H, Nikitakis N, Reynolds M, Sauk JJ (2005) Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J Drug Target 13:189–197 ArticlePubMedCAS Google Scholar
Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194 PubMedCAS Google Scholar
Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, Marks JD, Papahadjopoulos D, Benz CC (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74:95–113 ArticlePubMedCAS Google Scholar
Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z, Guo Y, Zhong Y (2008) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128:209–216 ArticlePubMedCAS Google Scholar
Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417 ArticlePubMedCAS Google Scholar
Dass CR (2004) Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J Mol Med 82:579–591 ArticlePubMedCAS Google Scholar
Noone PG, Hohneker KW, Zhou Z, Johnson LG, Foy C, Gipson C, Jones K, Noah TL, Leigh MW, Schwartzbach C, Efthimiou J, Pearlman R, Boucher RC, Knowles MR (2000) Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther 1:105–114 ArticlePubMedCAS Google Scholar
Stopeck AT, Jones A, Hersh EM, Thompson JA, Finucane DM, Gutheil JC, Gonzalez R (2001) Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res 7:2285–2291 PubMedCAS Google Scholar
Fattal E, Bochot A (2008) State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 364:237–248 ArticlePubMedCAS Google Scholar
Dheur S, Dias N, van Aerschot A, Herdewijn P, Bettinger T, Rémy JS, Hélène C, Saison-Behmoaras ET (1999) Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev 9:515–525 PubMedCAS Google Scholar
Grayson AC, Doody A, Putnam D (2006) Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 23:1868–1876 ArticlePubMedCAS Google Scholar
Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel S, Czubayko F, Aigner A (2006) RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 17:751–766 ArticlePubMedCAS Google Scholar
Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466 ArticlePubMedCAS Google Scholar
Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, Hochberg A, Leibovitch I (2008) Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol 180:2379–2383 ArticlePubMed Google Scholar
Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucl Acids Res 32:e149 ArticlePubMed Google Scholar
Chavany C, Le Doan T, Couvreur P, Puisieux F, Hélène C (1992) Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res 9:441–449 ArticlePubMedCAS Google Scholar
Schwab G, Chavany C, Duroux I, Goubin G, Lebeau J, Hélène C, Saison-Behmoaras T (1994) Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci USA 91:10460–10464 ArticlePubMedCAS Google Scholar
de Martimprey H, Bertrand J, Fusco A, Santoro M, Couvreur P, Vauthier C, Malvy C (2008) siRNA nanoformulation against the Ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res 36:e2 ArticlePubMedCAS Google Scholar
Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279 ArticlePubMedCAS Google Scholar
Lambert G, Fattal E, Brehier A, Feger J, Couvreur P (1998) Effect of polyisobutylcyanoacrylate nanoparticles and lipofectin loaded with oligonucleotides on cell viability and PKC alpha neosynthesis in HepG2 cells. Biochimie 80:969–976 ArticlePubMedCAS Google Scholar
Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2000) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 17:707–714 ArticlePubMedCAS Google Scholar
Toub N, Bertrand J, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A, Maccario J, Malvy C, Fattal E, Couvreur P (2006) Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900 ArticlePubMedCAS Google Scholar
Toub N, Angiari C, Eboué D, Fattal E, Tenu J, Le Doan T, Couvreur P (2005) Cellular fate of oligonucleotides when delivered by nanocapsules of poly(isobutylcyanoacrylate). J Control Release 106:209–213 ArticlePubMedCAS Google Scholar
Lambert G, Bertrand JR, Fattal E, Subra F, Pinto-Alphandary H, Malvy C, Auclair C, Couvreur P (2000) EWS fli-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun 279:401–406 ArticlePubMedCAS Google Scholar
Woodley JF (1985) Liposomes for oral administration of drugs. Crit Rev Ther Drug Carrier Syst 2:1–18 PubMedCAS Google Scholar
Aprahamian M, Michel C, Humbert W, Devissaguet JP, Damge C (1987) Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol Cell 61:69–76 PubMedCAS Google Scholar
Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251 ArticlePubMed Google Scholar
Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C (2003) Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 20:1071–1084 ArticlePubMedCAS Google Scholar
Damge C, Hillairebuys D, Puech R, Hoeltzel A, Michel C, Ribes G (1995) Effects of orally-administered insulin nanocapsules in normal and diabetic dogs. Diabetes Nutr Metabolism 8:3–9 CAS Google Scholar
Tobío M, Sánchez A, Vila A, Soriano I, Evora C, Vila-Jato JL, Alonso MJ (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 18:315–323 Google Scholar
Damgé C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117:163–170 ArticlePubMedCAS Google Scholar
Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581 ArticlePubMed Google Scholar
Vila A, Gill H, McCallion O, Alonso MJ (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98:231–244 ArticlePubMedCAS Google Scholar
Prego C, García M, Torres D, Alonso MJ (2005) Transmucosal macromolecular drug delivery. J Control Release 101:151–162 ArticlePubMedCAS Google Scholar
Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570 ArticlePubMedCAS Google Scholar
Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T (1999) Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 62:279–287 ArticlePubMedCAS Google Scholar
Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218:75–80 ArticlePubMedCAS Google Scholar
Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y (2005) Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 102:373–381 ArticlePubMedCAS Google Scholar
Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99:12001–12005 ArticlePubMedCAS Google Scholar
Grenha A, Seijo B, Remuñán-López C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25:427–437 ArticlePubMedCAS Google Scholar
Grenha A, Grainger CI, Dailey LA, Seijo B, Martin GP, Remuñán-López C, Forbes B (2007) Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci 31:73–84 ArticlePubMedCAS Google Scholar