Cellular ageing mechanisms in osteoarthritis (original) (raw)
Aigner T, Fundel K, Saas J et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54:3533–3544. doi:10.1002/art.22174 ArticleCASPubMed Google Scholar
Ailixiding M, Aibibula Z, Iwata M et al (2015) Pivotal role of Sirt6 in the crosstalk among ageing, metabolic syndrome and osteoarthritis. Biochem Biophys Res Commun 466:319–326. doi:10.1016/j.bbrc.2015.09.019 ArticleCASPubMed Google Scholar
Akasaki Y, Alvarez-Garcia O, Saito M et al (2014a) FOXO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol (Hoboken, NJ). doi:10.1002/art.38868 Google Scholar
Akasaki Y, Hasegawa A, Saito M et al (2014b) Dysregulated FOXO transcription factors in articular cartilage in ageing and osteoarthritis. Osteoarthr Cartil 22:162–170. doi:10.1016/j.joca.2013.11.004 ArticleCASPubMed Google Scholar
Baker MS, Feigan JLD (1988) Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J Rheumatol 15:670–677 CASPubMed Google Scholar
Bank RA, Bayliss MT, Lafeber FP, Maroudas A, TeKoppele JM (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(Pt 1):345–351 ArticleCASPubMedPubMed Central Google Scholar
Boileau C, Martel-pelletier J, Fahmi H, Boily M (2007) The peroxisome proliferator—activated receptor Υ agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum 56:2288–2298. doi:10.1002/art.22726 ArticleCASPubMed Google Scholar
Bouderlique T, Vuppalapati KK, Newton PT et al (2015) Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis. Ann Rheum Dis Annrheumdis. doi:10.1136/annrheumdis-2015-207742 Google Scholar
Brandt KD, Dieppe P, Radin EL (2009) Commentary: is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin Arthritis Rheum 39(2):81–95. doi:10.1016/j.semarthrit.2009.06.001 ArticlePubMed Google Scholar
Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ (2016) Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxford, England) 216(1):15–41. doi:10.1111/apha.12532 ArticleCAS Google Scholar
Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL (2012) Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum 64(7):2278–2288. doi:10.1002/art.34420 ArticleCASPubMed Google Scholar
Caramés B, Taniguchi N, Otsuki S et al (2010) Autophagy is a protective mechanism in normal cartilage, and its ageing-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801. doi:10.1002/art.27305 ArticlePubMedPubMed Central Google Scholar
Caramés B, Olmer M, Kiosses WB, Lotz MK (2015) The relationship of autophagy defects to cartilage damage during joint ageing in a mouse model. Arthritis Rheumatol 67:1568–1576. doi:10.1002/art.39073 ArticlePubMedPubMed Central Google Scholar
Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM (2003) Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 48(12):3452–3463. doi:10.1002/art.11355 ArticleCASPubMed Google Scholar
Clockaerts S, Bastiaansen-jenniskens YM, Feijt C et al (2011) Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage. Osteoarthr Cartil 19:895–902. doi:10.1016/j.joca.2011.03.010 ArticleCASPubMed Google Scholar
Del Carlo M, Loeser RF (2003) Increased oxidative stress with ageing reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430. doi:10.1002/art.11338 Article Google Scholar
Dvir-Ginzberg M, Gagarina V, Lee E-J, Hall DJ (2008) Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem 283:36300–36310. doi:10.1074/jbc.M803196200 ArticleCASPubMedPubMed Central Google Scholar
Ekenstedt KJ, Sonntag WE, Loeser RF et al (2006) Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum 54:3850–3858. doi:10.1002/art.22254 ArticleCASPubMed Google Scholar
Fortier LA, Mohammed HO, Lust G, Nixon JA (2002) Cell-Based Repair of Articular Cartilage. J Bone Jt Surg Br 84:276–288 ArticleCAS Google Scholar
Francois M, Richette P, Tsagris L et al (2006) Activation of the peroxisome proliferator-activated receptor alpha pathway potentiates interleukin-1 receptor antagonist production in cytokine-treated chondrocytes. Arthritis Rheum 54:1233–1245. doi:10.1002/art.21728 ArticleCASPubMed Google Scholar
Fujita N, Matsushita T, Ishida K et al (2011) Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 29:511–515. doi:10.1002/jor.21284 ArticleCASPubMed Google Scholar
Fukai A, Kamekura S, Chikazu D, Nakagawa T, Hirata M, Saito T et al (2012) Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum 64(1):198–203. doi:10.1002/art.33324 ArticleCASPubMed Google Scholar
Fukumoto T, Sperling JW, Sanyal A et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11:55–64. doi:10.1053/joca.2002.0869 ArticleCASPubMed Google Scholar
Glasson SS (2007) In vivo osteoarthritis target validation utilizing genetically- modified mice. Curr Drug Targets 8:367–376 ArticleCASPubMed Google Scholar
Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. doi:10.1038/nature05640 ArticleCASPubMed Google Scholar
Goodrich LR, Hidaka C, Robbins PD et al (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg 89:672–685. doi:10.1302/0301-620X.89B5.18343 ArticleCAS Google Scholar
Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Public Gr 13:89–102. doi:10.1038/nrm3270 CAS Google Scholar
Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JCW, Pitsillides AA (2003) Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem 278(52):53063–53071. doi:10.1074/jbc.M209632200 ArticleCASPubMed Google Scholar
Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi:10.1038/nature01298 ArticleCASPubMed Google Scholar
Jallali N, Ridha H, Thrasivoulou C et al (2005) Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthr Cartil 13:614–622. doi:10.1016/j.joca.2005.02.011 ArticleCASPubMed Google Scholar
Jallali N, Ridha H, Thrasivoulou C et al (2007) Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res 48:149–158. doi:10.1080/03008200701331516 ArticleCASPubMed Google Scholar
Lauder RM, Huckerby TN, Brown GM, Bayliss MT, Nieduszynski IA (2001) Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan. Biochem J 358(Pt 2):523–528 ArticleCASPubMedPubMed Central Google Scholar
Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730 ArticleCASPubMed Google Scholar
Loeser RF, Carlson CS, Del Carlo M, Cole A (2002) Detection of nitrotyrosine in ageing and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin-1β and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46:2349–2357. doi:10.1002/art.10496 ArticleCASPubMed Google Scholar
Loeser RF, Olex A, Mcnulty MA et al (2013) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64:705–717. doi:10.1002/art.33388.Microarray Article Google Scholar
Madej W, van Caam A, Blaney Davidson EN, Hannink G, Buma P, van der Kraan PM (2015) Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthr Cartil/OARS, Osteoarthr Res Soc. doi:10.1016/j.joca.2015.07.018 Google Scholar
Matsuzaki T, Matsushita T, Takayama K et al (2013) Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-202620 PubMed Google Scholar
Morales TI (2008) The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis. J Orthop Res 26:465–474. doi:10.1002/jor.20549 ArticleCASPubMedPubMed Central Google Scholar
Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator- activated receptors in carcinogenesis and chemoprevention. Nat Public Gr 12:181–195. doi:10.1038/nrc3214 CAS Google Scholar
Petursson F, Husa M, June R et al (2013) Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther 15:R77. doi:10.1186/ar4254 ArticlePubMedPubMed Central Google Scholar
Ratneswaran A, LeBlanc EAA, Walser E et al (2015) Peroxisome proliferator- activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol (Hoboken, NJ) 67:454–464. doi:10.1002/art.38915 ArticleCAS Google Scholar
Ruiz-Romero C, Calamia V, Mateos J et al (2009) Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteom 8:172–189. doi:10.1074/mcp.M800292-MCP200 ArticleCAS Google Scholar
Sacitharan PK, Snelling SJB, Edwards JR (2012) Ageing mechanisms in arthritic disease. Discov Med 14:345–352 PubMed Google Scholar
Sah R, Chen AC, Grodzinsky AJ, Trippel S (1994) Differential effect of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308:137–147 ArticleCASPubMed Google Scholar
Saklatvala J (1981) Characterization of catabolin, the major product of pig synovial tissue that induces resorption of cartilage proteoglycan in vitro. Biochem J 199:705–714 ArticleCASPubMedPubMed Central Google Scholar
Saklatvala J (1986) Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature 322:547–549. doi:10.1038/322547a0 ArticleCASPubMed Google Scholar
Salmon WD Jr, Daughaday W (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49:825–836 CASPubMed Google Scholar
Terkeltaub R, Yang B, Lotz M, Liu-Bryan R (2011) Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum 63:1928–1937. doi:10.1002/art.30333 ArticleCASPubMedPubMed Central Google Scholar
Tsukazaki T, Matsumoto T, Enomoto H, Usa T, Ohtsuru A, Namba H, Iwasaki KYS (1994) Growth hormone directly and indirectly stimulates articular chondrocyte cell growth. Osteoarthr Cartil 2:259–267 ArticleCASPubMed Google Scholar
Uehara Y, Hirose J, Yamabe S et al (2014) Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthr Cartil 22:1007–1017. doi:10.1016/j.joca.2014.04.025 ArticleCASPubMed Google Scholar
van Heemst D (2010) Insulin, IGF-1 and longevity. Ageing Dis 1:147–157 Google Scholar
Vasheghani F, Monemdjou R, Fahmi H et al (2013) Short communication: adult cartilage-specific peroxisome proliferator e activated receptor gamma knockout mice exhibit the spontaneous osteoarthritis phenotype. Am J Pathol 182:1099–1106. doi:10.1016/j.ajpath.2012.12.012 ArticleCASPubMed Google Scholar
Vasheghani F, Zhang Y, Li Y et al (2015) PPAR γ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-205743 PubMed Central Google Scholar
Wu Y, Chen L, Wang Y et al (2015) Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development. Sci Rep 5:17602. doi:10.1038/srep17602 ArticleCASPubMedPubMed Central Google Scholar
Zhang Y, Vasheghani F, Li Y-H et al (2014) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis 1–9:1432–1440. doi:10.1136/annrheumdis-2013-204599 Google Scholar