Emerging regulators of the inflammatory process in osteoarthritis (original) (raw)
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum.64, 1697–1707 (2012). ArticlePubMedPubMed Central Google Scholar
Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinicalsymptoms of osteoarthritis. Nat. Rev. Rheumatol.6, 625–635 (2010). ArticleCASPubMed Google Scholar
Karsdal, M. A. et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann. Rheum. Dis.73, 336–348 (2014). ArticleCASPubMed Google Scholar
Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci.1192, 230–237 (2010). ArticleCASPubMed Google Scholar
Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol.7, 161–169 (2011). ArticleCASPubMed Google Scholar
Bao, J. P., Chen, W. P. & Wu, L. D. Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol. Biol. Rep.38, 2879–2885 (2011). ArticleCASPubMed Google Scholar
Berenbaum, F., Eymard, F. & Houard, X. Osteoarthritis, inflammation and obesity. Curr. Opin. Rheumatol.25, 114–118 (2013). ArticleCASPubMed Google Scholar
Issa, R. I. & Griffin, T. M. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol. Aging Age Relat. Dis.2, 17470 (2012). ArticleCASPubMed Google Scholar
Bonnet, C. S. et al. AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis. Ann. Rheum. Dis.http://dx.doi.org/10.1136/annrheumdis-2013-203670.
Malfait, A. M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol.9, 654–664 (2013). ArticleCASPubMedPubMed Central Google Scholar
Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA109, 20602–20607 (2012). CASPubMedPubMed Central Google Scholar
Punzi, L., Frigato, M., Frallonardo, P. & Ramonda, R. Inflammatory osteoarthritis of the hand. Best Pract. Res. Clin. Rheumatol.24, 301–312 (2010). ArticlePubMed Google Scholar
Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med.19, 704–712 (2013). ArticleCASPubMedPubMed Central Google Scholar
Guermazi, A. et al. Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: the MOST study. J. Rheumatol.41, 501–508 (2014). ArticlePubMedPubMed Central Google Scholar
de Lange-Brokaar, B. J. E. et al. Degree of synovitis on MRI by comprehensive whole knee semi-quantitative scoring method correlates with histologic and macroscopic features of synovial tissue inflammation in knee osteoarthritis. Osteoarthritis Cartilagehttp://dx.doi.org/10.1016/j.joca.2013.12.013.
Knoop, J. et al. Biomechanical factors and physical examination findings in osteoarthritis of the knee: associations with tissue abnormalities assessed by conventional radiography and high-resolution 3.0 Tesla magnetic resonance imaging. Arthritis Res. Ther.14, R212 (2012). ArticlePubMedPubMed Central Google Scholar
Guermazi, A. et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ345, e5339 (2012). ArticlePubMedPubMed Central Google Scholar
Lambert, C. et al. Gene expression pattern of synovial cells from inflammatory and normal areas of osteoarthritis synovial membrane. Arthritis Rheum.http://dx.doi.org/10.1002/art.38315.
Li, J. et al. Hyaluronan injection in murine osteoarthritis prevents TGFβ 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res. Ther.14, R151 (2012). ArticleCASPubMedPubMed Central Google Scholar
Flannery, C. R. et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum.60, 840–847 (2009). ArticleCASPubMed Google Scholar
Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol.9, 400–410 (2013). ArticleCASPubMed Google Scholar
Bougault, C. et al. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum.64, 3972–3981 (2012). ArticleCASPubMed Google Scholar
Hernandez-Cuellar, E. et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J. Immunol.189, 5113–5117 (2012). ArticleCASPubMed Google Scholar
Mao, K. et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res.23, 201–212 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu-Bryan, R. & Terkeltaub, R. The growing array of innate inflammatory ignition switches in osteoarthritis. Arthritis Rheum.64, 2055–2058 (2012). ArticlePubMedPubMed Central Google Scholar
Schelbergen, R. F. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum.64, 1477–1487 (2012). ArticleCASPubMed Google Scholar
Cecil, D. L. et al. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J. Immunol.182, 5024–5031 (2009). ArticleCASPubMed Google Scholar
Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA108, 14867–14872 (2011). ArticlePubMedPubMed Central Google Scholar
Lepus, C. M. et al. Brief report: carboxypeptidase B serves as a protective mediator in osteoarthritis. Arthritis Rheum.66, 101–106 (2014). ArticleCAS Google Scholar
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell157, 1515–1526 (2014). ArticleCASPubMedPubMed Central Google Scholar
Merz, D., Liu, R., Johnson, K. & Terkeltaub, R. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol.171, 4406–4415 (2003). ArticleCASPubMed Google Scholar
Marcu, K. B., Otero, M., Olivotto, E., Borzi, R. M. & Goldring, M. B. NF-κB signaling: multiple angles to target OA. Curr. Drug Targets11, 599–613 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lin, A. C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med.15, 1421–1425 (2009). ArticleCASPubMed Google Scholar
Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med.15, 1072–1076 (2009). ArticleCASPubMed Google Scholar
Pap., T. & Bertrand, J. Syndecans in cartilage breakdown and synovial inflammation. Nat. Rev. Rheumatol.9, 43–55 (2013). ArticleCASPubMed Google Scholar
Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med.16, 678–686 (2010). ArticleCASPubMed Google Scholar
Yang, S. et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med.16, 687–693 (2010). ArticleCASPubMed Google Scholar
Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc–ZIP8–MTF1 axis. Cell156, 730–743 (2014). ArticleCASPubMed Google Scholar
Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum.62, 2004–2012 (2010). PubMedPubMed Central Google Scholar
Yano, F. et al. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor. Arthritis Rheum.65, 429–435 (2013). ArticleCASPubMed Google Scholar
Pesesse, L. et al. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. Osteoarthritis Cartilage21, 1913–1923 (2013). ArticleCASPubMed Google Scholar
Konisti, S., Kiriakidis, S. & Paleolog, E. M. Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat. Rev. Rheumatol.8, 153–162 (2012). ArticleCASPubMed Google Scholar
Clérigues, V., Murphy, C. L., Guillén, M. I. & Alcaraz, M. J. Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin. Sci. (Lond.)125, 99–108 (2013). ArticleCAS Google Scholar
Thoms, B. L., Dudek, K. A., Lafont, J. E. & Murphy, C. L. Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum.65, 1302–1312 (2013). ArticleCASPubMed Google Scholar
Johnson, K. et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum.43, 1560–1570 (2000). ArticleCASPubMed Google Scholar
Johnson, K. et al. Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum.50, 1216–1225 (2004). ArticleCASPubMed Google Scholar
Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol.7, 161–169 (2011). ArticleCASPubMed Google Scholar
Rego-Perez, I. et al. Mitochondrial genetics and osteoarthritis. Front. Biosci. (Schol. Ed.)5, 360–368 (2013). Article Google Scholar
Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis.69, 1502–1510 (2010). ArticleCASPubMed Google Scholar
Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol.14, 454–460 (2013). ArticleCASPubMed Google Scholar
Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W. & Young, D. A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum.65, 378–387 (2013). ArticleCASPubMed Google Scholar
Vaamonde-Garcia, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum.64, 2927–2936 (2012). ArticleCASPubMed Google Scholar
O'Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature493, 346–355 (2013). ArticleCASPubMed Google Scholar
Rath, E. & Haller, D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm. Bowel Dis.18, 1364–1377 (2012). ArticlePubMed Google Scholar
Schiavi, A. & Ventura, N. The interplay between mitochondria and autophagy and its role in the aging process. Exp. Gerontol.56, 147–153 (2014). ArticleCASPubMed Google Scholar
Steinberg, G. R. & Kemp, B. E. AMPK in health and disease. Physiol. Rev.89, 1025–1078 (2009). ArticleCASPubMed Google Scholar
Witczak, C. A., Sharoff, C. G. & Goodyear, L. J. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell. Mol. Life Sci.65, 3737–3755 (2008). ArticleCASPubMed Google Scholar
Terkeltaub, R., Yang, B., Lotz, M. & Liu-Bryan, R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to inflammatory cytokines IL-1β and TNFα. Arthritis Rheum.63, 1928–1937 (2011). ArticleCASPubMedPubMed Central Google Scholar
Petursson, F. et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res. Ther.15, R77 (2013). ArticlePubMedPubMed Central Google Scholar
Salminen, A. & Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev.11, 230–241 (2012). ArticleCASPubMed Google Scholar
Dvir-Ginzberg, M. & Steinmeyer, J. Towards elucidating the role of SirT1 in osteoarthritis. Front. Biosci.18, 343–355 (2013). ArticleCAS Google Scholar
Gabay, O. et al. Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum.65, 159–166 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dvir-Ginzberg, M., Gagarina, V., Lee, E. J. & Hall, D. J. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J. Biol. Chem.283, 36300–36310 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hong, E. H. et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem.285, 1283–1295 (2010). ArticleCASPubMed Google Scholar
Takayama, K. et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum.60, 2731–2740 (2009). ArticleCASPubMed Google Scholar
Gagarina, V. et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum.62, 1383–1392 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gabay, O. et al. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann. Rheum. Dis.71, 613–616 (2012). ArticleCASPubMed Google Scholar
Matsuzaki, T. et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann. Rheum. Dis.73, 1397–1404 (2014). ArticleCASPubMed Google Scholar
Moon, M. H. et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. Osteoarthritis Cartilage21, 470–480 (2013). ArticlePubMed Google Scholar
Matsushita, T. et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1β in human chondrocytes. J. Orthop. Res.31, 531–537 (2013). ArticleCASPubMed Google Scholar
Lei, M. et al. Resveratrol inhibits interleukin 1β-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-κB activity. Eur. J. Pharmacol.674, 73–79 (2012). ArticleCASPubMed Google Scholar
Wang, J., Gao, J. S., Chen, J. W., Li, F. & Tian, J. Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatol. Int.32, 1541–1548 (2012). ArticleCASPubMed Google Scholar
Dave, M. et al. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. Arthritis Rheum.58, 2786–2797 (2008). ArticlePubMed Google Scholar
Shakibaei, M., Csaki, C., Nebrich, S. & Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol.76, 1426–1439 (2008). ArticleCASPubMed Google Scholar
Csaki, C., Keshishzadeh, N., Fischer, K. & Shakibaei, M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol.75, 677–687 (2008). ArticleCASPubMed Google Scholar
Shakibaei, M., John, T., Seifarth, C. & Mobasheri, A. Resveratrol inhibits IL-1 β-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. NY Acad. Sci.1095, 554–563 (2007). ArticleCASPubMed Google Scholar
Lotz, M. & Carames, B. Autophagy: a new therapeutic target in cartilage injury and osteoarthritis. J. Am. Acad. Orthop. Surg.20, 261–262 (2012). ArticlePubMed Google Scholar
Husa, M., Petursson, F., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res. Ther.15, R218 (2013). ArticleCASPubMedPubMed Central Google Scholar
Colbert, R. A., Tran, T. M. & Layh-Schmitt, G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol.57, 44–51 (2014). ArticleCASPubMed Google Scholar
Carneiro, L. A. & Travassos, L. H. The interplay between NLRs and autophagy in immunity and inflammation. Front. Immunol.4, 361 (2013). ArticleCASPubMedPubMed Central Google Scholar
Arroyo, D. S. et al. Autophagy in inflammation, infection, neurodegeneration and cancer. Int. Immunopharmacol.18, 55–65 (2014). ArticleCASPubMed Google Scholar
Claudio, N., Dalet, A., Gatti, E. & Pierre, P. Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J.32, 1214–1224 (2013). ArticleCASPubMedPubMed Central Google Scholar
Garg, A. D. et al. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol. Med.18, 589–598 (2012). ArticleCASPubMed Google Scholar
Liang, G. et al. Endoplasmic reticulum stress–unfolding protein response–apoptosis cascade causes chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model. PLoS ONE9, e86894 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gualeni, B. et al. A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth. Dis. Model. Mech.6, 1414–1425 (2013). ArticleCASPubMedPubMed Central Google Scholar
Oliver, B. L., Cronin, C. G., Zhang-Benoit, Y., Goldring, M. B. & Tanzer, M. L. Divergent stress responses to IL-1β, nitric oxide, and tunicamycin by chondrocytes. J. Cell. Physiol.204, 45–50 (2005). ArticleCASPubMed Google Scholar
Takada, K. et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int. J. Exp. Pathol.92, 232–242 (2011). ArticlePubMedPubMed Central Google Scholar
Guo, F. J. et al. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell. Signal.26, 332–342 (2014). ArticleCASPubMed Google Scholar
Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol.11, 411–418 (2010). ArticleCASPubMedPubMed Central Google Scholar
Uehara, Y. et al. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage22, 1007–1017 (2014). ArticleCASPubMed Google Scholar
Fukai, A. et al. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum.64, 198–203 (2012). ArticleCASPubMed Google Scholar
Vincent, H. K. et al. Hyaluronic acid (HA) viscosupplementation on synovial fluid inflammation in knee osteoarthritis: a pilot study. Open Orthop. J.7, 378–384 (2013). ArticlePubMedPubMed Central Google Scholar
Henrotin, Y., Lambert, C. & Richette, P. Importance of synovitis in osteoarthritis: evidence for the use of glycosaminoglycans against synovial inflammation. Semin. Arthritis Rheum.43, 579–587 (2014). ArticleCASPubMed Google Scholar
Leong, D. J. et al. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. Int. J. Mol. Sci.14, 23063–23085 (2013). ArticleCASPubMedPubMed Central Google Scholar
Messier, S. P. et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA310, 1263–1273 (2013). ArticleCASPubMedPubMed Central Google Scholar
Srinivas, V., Bohensky, J. & Shapiro, I. M. Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs189, 88–92 (2009). ArticleCASPubMed Google Scholar
Abou-Raya, A., Abou-Raya, S. & Khadrawe, T. Methotrexate in the treatment of symptomatic knee osteoarthritis: randomised placebo-controlled trial. Ann. Rheum. Dis.http://dx.doi.org/10.1136/annrheumdis-2013-204856.
Nasi, S. et al. Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent Toll-like receptors (TLRs) in a murine model of osteoarthritis. Joint Bone Spine81, 320–324 (2014). ArticleCASPubMed Google Scholar