Shi, Y., Hon, M. & Evans, R. M. The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proc. Natl Acad. Sci. USA99, 2613–2618 (2002). ArticleCASPubMedPubMed Central Google Scholar
Adhikary, T. et al. Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). PLoS ONE6, e16344 (2011). ArticleCASPubMedPubMed Central Google Scholar
Borland, M. G. et al. Stable over-expression of PPARβ/δ and PPARγ to examine receptor signaling in human HaCaT keratinocytes. Cell. Signal.23, 2039–2050 (2011). This study critically examined possible mechanisms of PPARβ/δ-dependent regulation, including whether retinoic acid activates PPARβ/δ, whether PPARβ/δ represses PPARγ activity and how PPARβ/δ regulates apoptosis and inflammatory cytokine expression following exposure to ultraviolet light. ArticleCASPubMedPubMed Central Google Scholar
Marin, H. E. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits colon carcinogenesis. Cancer Res.66, 4394–4401 (2006). ArticleCASPubMed Google Scholar
Matsusue, K., Peters, J. M. & Gonzalez, F. J. PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. FASEB J.18, 1477–1479 (2004). ArticleCASPubMed Google Scholar
Peters, J. M., Aoyama, T., Burns, A. M. & Gonzalez, F. J. Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice. Biochim. Biophys. Acta1632, 80–89 (2003). ArticleCASPubMed Google Scholar
Kilgore, K. S. & Billin, A. N. PPARβ/δ ligands as modulators of the inflammatory response. Curr. Opin. Investig. Drugs9, 463–469 (2008). CASPubMed Google Scholar
Peters, J. M., Foreman, J. E. & Gonzalez, F. J. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast and lung carcinogenesis. Cancer Metastasis Rev.30, 619–640 (2011). ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M. & Gonzalez, F. J. Sorting out the functional role(s) of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cell proliferation and cancer. Biochim. Biophys. Acta1796, 230–241 (2009). CASPubMedPubMed Central Google Scholar
Peters, J. M., Hollingshead, H. E. & Gonzalez, F. J. Role of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) in gastrointestinal tract function and disease. Clin. Sci.115, 107–127 (2008). ArticleCAS Google Scholar
Peters, J. M., Morales, J. L. & Gonzales, F. J. Modulation of gastrointestinal inflammation and colorectal tumorigenesis by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Drug Discov. Today Dis. Mech. 29 Nov 2011 (doi: 10.1016/j.ddmec.2011.11.002). ArticleCASPubMed Google Scholar
Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta1812, 1007–1022 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature437, 759–763 (2005). ArticleCASPubMedPubMed Central Google Scholar
Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol.28, 551–558 (2007). A good review of the literature describing mechanisms of trans-repression by PPARs. ArticleCASPubMed Google Scholar
Choi, J. H. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature477, 477–481 (2011). This study demonstrated the feasibility of targeting PPARγ with a non-agonist to elicit anti-diabetic activity without causing the negative side effects that are associated with some PPARγ agonists. ArticleCASPubMedPubMed Central Google Scholar
Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature347, 645–650 (1990). This study describes the cloning and characterization of PPARα, the first of the three PPARs to be identified. ArticleCASPubMed Google Scholar
Escher, P. et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology142, 4195–4202 (2001). ArticleCASPubMed Google Scholar
Pyper, S. R., Viswakarma, N., Yu, S. & Reddy, J. K. PPARα: energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept Signal.8, e002 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Mandard, S., Muller, M. & Kersten, S. Peroxisome proliferator-activated receptor α target genes. Cell. Mol. Life Sci.61, 393–416 (2004). A useful resource listing PPARα target genes and corresponding references. ArticleCASPubMed Google Scholar
Kersten, S. et al. The peroxisome proliferator-activated receptor α regulates amino acid metabolism. FASEB J.15, 1971–1978 (2001). ArticleCASPubMed Google Scholar
Guerre-Millo, M. et al. Peroxisome Proliferator-activated Receptorα activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem.275, 16638–16642 (2000). ArticleCASPubMed Google Scholar
Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nature Biotech.28, 1248–1250 (2010). ArticleCAS Google Scholar
Girroir, E. E. et al. Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice. Biochem. Biophys. Res. Commun.371, 456–461 (2008). ArticleCASPubMedPubMed Central Google Scholar
Leibowitz, M. D. et al. Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett.473, 333–336 (2000). This study was one of the first to demonstrate a functional phenotype resulting from activating PPARβ/δ. ArticleCASPubMed Google Scholar
Oliver, W. R. Jr. et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA98, 5306–5311 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sprecher, D. L. et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arterioscler. Thromb. Vasc. Biol.27, 359–365 (2007). ArticleCASPubMed Google Scholar
Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA100, 15924–15929 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell113, 159–170 (2003). ArticleCASPubMed Google Scholar
Lim, H. J. et al. PPARδ ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR−/− mice. Eur. J. Pharmacol.622, 45–51 (2009). ArticleCASPubMed Google Scholar
Liu, S. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation. J. Biol. Chem.286, 1237–1247 (2011). ArticleCASPubMed Google Scholar
Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol.536, 182–191 (2006). ArticleCASPubMed Google Scholar
Shan, W. et al. Peroxisome proliferator-activated receptor-β/δ protects against chemically induced liver toxicity in mice. Hepatology47, 225–235 (2008). ArticleCASPubMed Google Scholar
Shan, W. et al. Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicol. Sci.105, 418–428 (2008). ArticleCASPubMedPubMed Central Google Scholar
Burdick, A. D., Kim, D. J., Peraza, M. A., Gonzalez, F. J. & Peters, J. M. The role of peroxisome proliferator-activated receptor-β/δ in epithelial cell growth and differentiation. Cell. Signal.18, 9–20 (2006). ArticleCASPubMed Google Scholar
Zhu, Y. et al. Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms. Proc. Natl Acad. Sci. USA92, 7921–7925 (1995). ArticleCASPubMedPubMed Central Google Scholar
Fajas, L., Fruchart, J. C. & Auwerx, J. PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett.438, 55–60 (1998). ArticleCASPubMed Google Scholar
Foreman, J. E. et al. Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs. Mol. Carcinog.48, 942–952 (2009); erratum 50, 652–653 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abbott, B. D., Wood, C. R., Watkins, A. M., Das, K. P. & Lau, C. S. Peroxisome proliferator-activated receptors α, β, and γ mRNA and protein expression in human fetal tissues. PPAR Res.2010, 690907 (2010); erratum 2010, 627284 (2010). PubMedPubMed Central Google Scholar
Barak, Y. et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell4, 585–595 (1999). ArticleCASPubMed Google Scholar
Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR γ 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev.8, 1224–1234 (1994). ArticleCASPubMed Google Scholar
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell79, 1147–1156 (1994). ArticleCASPubMed Google Scholar
Reddy, J. K., Azarnoff, D. L. & Hignite, C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature283, 397–398 (1980). This study was one of the first to demonstrate that long-term administration of PPARα agonists causes liver cancer in rodents. ArticleCASPubMed Google Scholar
Peters, J. M., Cattley, R. C. & Gonzalez, F. J. Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis18, 2029–2033 (1997). This study established that PPARα is required to mediate hepatocarcinogenesis caused by long-term administration of PPARα agonists in mice. ArticleCASPubMed Google Scholar
Hays, T. et al. Role of peroxisome proliferator-activated receptor-α (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis26, 219–227 (2005). ArticleCASPubMed Google Scholar
Peters, J. M., Cheung, C. & Gonzalez, F. J. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J. Mol. Med.83, 774–785 (2005). ArticleCASPubMed Google Scholar
Cheung, C. et al. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor-α. Cancer Res.64, 3849–3854 (2004). ArticleCASPubMed Google Scholar
Morimura, K., Cheung, C., Ward, J. M., Reddy, J. K. & Gonzalez, F. J. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor α to Wy-14,643-induced liver tumorigenesis. Carcinogenesis27, 1074–1080 (2006). This study demonstrated that PPARα-humanized transgenic models do not develop liver tumours after long-term administration of PPARα agonists, suggesting a species difference in activities between human and rodent PPARα. ArticleCASPubMed Google Scholar
Shah, Y. M. et al. Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol. Cell. Biol.27, 4238–4247 (2007). This study helped to elucidate the mechanism that explains why human PPARα does not mediate hepatocarcinogenesis, but the mouse PPARα does, by showing differential regulation of let-7c miRNA. ArticleCASPubMedPubMed Central Google Scholar
He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell99, 335–345 (1999). ArticleCASPubMedPubMed Central Google Scholar
Modica, S. et al. The intestinal nuclear receptor signature with epithelial localization patterns and expression modulation in tumors. Gastroenterology138, 636–648 (2010). ArticleCASPubMed Google Scholar
Foreman, J. E. et al. Functional characterization of peroxisome proliferator-activated receptor-β/δ expression in colon cancer. Mol. Carcinog.50, 884–900 (2011). This is the most quantitative study to date showing that expression of PPARβ/δ protein is lower in human and rodent colon tumours compared with non-transformed tissue and also includes functional characterization of overexpression of PPARβ/δ in human colon cancer cell lines. ArticleCASPubMedPubMed Central Google Scholar
Delage, B., Rullier, A., Capdepont, M., Rullier, E. & Cassand, P. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers. Nutr. J.6, 20 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer. Proc. Natl Acad. Sci. USA97, 13275–13280 (2000). ArticleCASPubMedPubMed Central Google Scholar
Roy, H. K., Karolski, W. J. & Ratashak, A. Distal bowel selectivity in the chemoprevention of experimental colon carcinogenesis by the non-steroidal anti-inflammatory drug nabumetone. Int. J. Cancer92, 609–615 (2001). ArticleCASPubMed Google Scholar
Takayama, O. et al. Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology. Br. J. Cancer95, 889–895 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, D., Ning, W., Xie, D., Guo, L. & Dubois, R. N. Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells. Oncogene 18 July 2011 (doi: 10.1038/onc.2011.299). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. et al. Biological function and prognostic significance of peroxisome proliferator-activated receptor δ in rectal cancer. Clin. Cancer Res.17, 3760–3770 (2011). This study provides the strongest clinical evidence to date showing that PPARβ/δ protects against colorectal cancer in humans. ArticleCASPubMed Google Scholar
Yoshinaga, M. et al. The simultaneous expression of peroxisome proliferator-activated receptor delta and cyclooxygenase-2 may enhance angiogenesis and tumor venous invasion in tissues of colorectal cancers. Dig. Dis. Sci.54, 1108–1114 (2009). ArticleCASPubMed Google Scholar
Yoshinaga, M. et al. The expression of both peroxisome proliferator-activated receptor δ and cyclooxygenase-2 in tissues is associated with poor prognosis in colorectal cancer patients. Dig. Dis. Sci.56, 1194–1200 (2011). ArticleCASPubMed Google Scholar
Davidson, B., Hadar, R., Stavnes, H. T., Trope, C. G. & Reich, R. Expression of the peroxisome proliferator-activated receptors-α, -β, and -γ in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival. Hum. Pathol.40, 705–713 (2009). ArticleCASPubMed Google Scholar
Jaeckel, E. C. et al. Correlation of expression of cyclooxygenase-2, vascular endothelial growth factor, and peroxisome proliferator-activated receptor δ with head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg.127, 1253–1259 (2001). ArticleCASPubMed Google Scholar
Nijsten, T., Geluyckens, E., Colpaert, C. & Lambert, J. Peroxisome proliferator-activated receptors in squamous cell carcinoma and its precursors. J. Cutan. Pathol.32, 340–347 (2005). ArticlePubMed Google Scholar
Tong, B. J. et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator- activated receptor-δ in human endometrial adenocarcinoma. Neoplasia2, 483–490 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chen, L. C. et al. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Res.64, 3694–3700 (2004). ArticleCASPubMed Google Scholar
Hao, C. Y. et al. Alteration of gene expression in macroscopically normal colonic mucosa from individuals with a family history of sporadic colon cancer. Clin. Cancer Res.11, 1400–1407 (2005). ArticleCASPubMed Google Scholar
Harman, F. S. et al. Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis. Nature Med.10, 481–483 (2004). ArticleCASPubMed Google Scholar
Knutsen, H. K. et al. Increased levels of PPARβ/δ and cyclin D1 in flat dysplastic ACF and adenomas in _Apc_Min/+ mice. Anticancer Res.25, 3781–3789 (2005). CASPubMed Google Scholar
Notterman, D. A., Alon, U., Sierk, A. J. & Levine, A. J. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res.61, 3124–3130 (2001). CASPubMed Google Scholar
Orner, G. A. et al. Suppression of tumorigenesis in the Apcmin mouse: down-regulation of β-catenin signaling by a combination of tea plus sulindac. Carcinogenesis24, 263–267 (2003). ArticleCASPubMed Google Scholar
Reed, K. R. et al. PPARδ status and Apc-mediated tumourigenesis in the mouse intestine. Oncogene23, 8992–8996 (2004). ArticleCASPubMed Google Scholar
Feilchenfeldt, J., Brundler, M. A., Soravia, C., Totsch, M. & Meier, C. A. Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPARγ-coactivator 1 (PGC-1). Cancer Lett.203, 25–33 (2004). ArticleCASPubMed Google Scholar
Yang, L. et al. Quantitative analysis of PPARδ mRNA by real-time RT-PCR in 86 rectal cancer tissues. Eur. J. Surg. Oncol.32, 181–185 (2006). ArticleCASPubMed Google Scholar
Ahmed, N., Riley, C. & Quinn, M. A. An immunohistochemical perspective of PPARβ and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br. J. Cancer98, 1415–1424 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yoshimura, R. et al. Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int. J. Cancer104, 597–602 (2003). ArticleCASPubMed Google Scholar
Foreman, J. E. et al. Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs. Mol. Carcinog.48, 942–952 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ouyang, N., Williams, J. L. & Rigas, B. NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APCmin/+ mice proportionally to their tumor inhibitory effect: implications for the role of PPARδ in carcinogenesis. Carcinogenesis27, 232–239 (2006). ArticleCASPubMed Google Scholar
Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol.27, 7551–7559 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev.18, 1385–1390 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sheehan, K. M. et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA282, 1254–1257 (1999). ArticleCASPubMed Google Scholar
Hollingshead, H. E. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis29, 169–176 (2008). ArticleCASPubMed Google Scholar
Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nature Med.10, 245–247 (2004). ArticleCASPubMed Google Scholar
Wang, D. et al. Crosstalk between peroxisome proliferator-activated receptor δ and VEGF stimulates cancer progression. Proc. Natl Acad. Sci. USA103, 19069–19074 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zuo, X. et al. Targeted genetic disruption of peroxisome proliferator-activated receptor-δ and colonic tumorigenesis. J. Natl Cancer Inst.101, 762–767 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bility, M. T. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits chemically-induced skin tumorigenesis. Carcinogenesis29, 2406–2414 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bility, M. T., Zhu, B., Kang, B. H., Gonzalez, F. J. & Peters, J. M. Ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase-2 enhances inhibition of skin tumorigenesis. Toxicol. Sci.113, 27–36 (2010). ArticleCASPubMed Google Scholar
Kim, D. J. et al. Peroxisome proliferator-activated receptor β (δ)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J. Biol. Chem.279, 23719–23727 (2004). ArticleCASPubMed Google Scholar
Kim, D. J., Prabhu, K. S., Gonzalez, F. J. & Peters, J. M. Inhibition of chemically-induced skin carcinogenicity by sulindac is independent of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Carcinogenesis27, 1105–1112 (2006). ArticleCASPubMed Google Scholar
Zhu, B. et al. Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase 2. Mol. Cancer Ther.9, 3267–3277 (2011). ArticleCAS Google Scholar
Di-Poi, N., Tan, N. S., Michalik, L., Wahli, W. & Desvergne, B. Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell10, 721–733 (2002). ArticleCASPubMed Google Scholar
Borland, M. G. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell proliferation in human HaCaT keratinocytes. Mol. Pharmacol.74, 1429–1442 (2008). ArticleCASPubMed Google Scholar
Burdick, A. D. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell growth of human N/TERT-1 keratinocytes. Cell. Signal.19, 1163–1171 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kim, D. J. et al. PPARβ/δ selectively induces differentiation and inhibits cell proliferation. Cell Death Differ.13, 53–60 (2006). ArticleCASPubMed Google Scholar
Pollock, C. B. et al. PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis. PLoS ONE6, e16215 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tachibana, K. et al. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl. Recept.3, 3 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Szeles, L. et al. Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol. Endocrinol.24, 2218–2231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hollingshead, H. E. et al. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis28, 2641–2649 (2007). ArticleCASPubMed Google Scholar
Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N. & Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell129, 723–733 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rohrl, C. et al. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. J. Cancer Res. Clin. Oncol.137, 29–39 (2011). ArticleCASPubMed Google Scholar
Stephen, R. L. et al. Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Res.64, 3162–3170 (2004). ArticleCASPubMed Google Scholar
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature454, 436–444 (2008). ArticleCASPubMed Google Scholar
Grommes, C., Landreth, G. E. & Heneka, M. T. Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists. Lancet Oncol.5, 419–429 (2004). ArticleCASPubMed Google Scholar
Koeffler, H. P. Peroxisome proliferator-activated receptor γ and cancers. Clin. Cancer Res.9, 1–9 (2003). CASPubMed Google Scholar
Ogino, S. et al. Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARγ) is associated with good prognosis. Gastroenterology136, 1242–1250 (2009). This study provided clinical evidence showing that PPARγ protects against colorectal cancer in humans. ArticleCASPubMed Google Scholar
McAlpine, C. A., Barak, Y., Matise, I. & Cormier, R. T. Intestinal-specific PPARγ deficiency enhances tumorigenesis in ApcMin/+ mice. Int. J. Cancer119, 2339–2346 (2006). ArticleCASPubMed Google Scholar
Elnemr, A. et al. PPARγ ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int. J. Oncol.17, 1157–1164 (2000). CASPubMed Google Scholar
Gupta, R. A., Brockman, J. A., Sarraf, P., Willson, T. M. & DuBois, R. N. Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells. J. Biol. Chem.276, 29681–29687 (2001). ArticleCASPubMed Google Scholar
Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med.4, 1046–1052 (1998). ArticleCASPubMed Google Scholar
Tontonoz, P. et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl Acad. Sci. USA94, 237–241 (1997). This study was one of the first to establish that PPARγ ligands can induce differentiation in human cancer cells providing support for the hypothesis that targeting PPARγ may be suitable for human cancers. ArticleCASPubMedPubMed Central Google Scholar
Yoshizumi, T. et al. Thiazolidinedione, a peroxisome proliferator-activated receptor-γ ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int. J. Oncol.25, 631–639 (2004). CASPubMed Google Scholar
Huang, J. W. et al. Peroxisome proliferator-activated receptor γ-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol. Pharmacol.67, 1342–1348 (2005). ArticleCASPubMed Google Scholar
Lapillonne, H. et al. Activation of peroxisome proliferator-activated receptor γ by a novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Cancer Res.63, 5926–5939 (2003). CASPubMed Google Scholar
Qin, C. et al. Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells. Cancer Res.63, 958–964 (2003). CASPubMed Google Scholar
Wang, C. et al. Inhibition of cellular proliferation through IκB kinase-independent and peroxisome proliferator-activated receptor γ-dependent repression of cyclin D1. Mol. Cell. Biol.21, 3057–3070 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yin, F. et al. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem. Biophys. Res. Commun.286, 916–922 (2001). ArticleCASPubMed Google Scholar
Koga, H. et al. Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology33, 1087–1097 (2001). ArticleCASPubMed Google Scholar
Chen, F. & Harrison, L. E. Ciglitazone-induced cellular anti-proliferation increases p27kip1 protein levels through both increased transcriptional activity and inhibition of proteasome degradation. Cell. Signal.17, 809–816 (2005). ArticleCASPubMed Google Scholar
Chen, F., Kim, E., Wang, C. C. & Harrison, L. E. Ciglitazone-induced p27 gene transcriptional activity is mediated through Sp1 and is negatively regulated by the MAPK signaling pathway. Cell. Signal.17, 1572–1577 (2005). ArticleCASPubMed Google Scholar
Itami, A. et al. Ligands for peroxisome proliferator-activated receptor γ inhibit growth of pancreatic cancers both in vitro and in vivo. Int. J. Cancer94, 370–376 (2001). ArticleCASPubMed Google Scholar
Koga, H. et al. Troglitazone induces p27_Kip1_-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology37, 1086–1096 (2003). ArticleCASPubMed Google Scholar
Motomura, W., Okumura, T., Takahashi, N., Obara, T. & Kohgo, Y. Activation of peroxisome proliferator-activated receptor γ by troglitazone inhibits cell growth through the increase of p27KiP1 in human. Pancreatic carcinoma cells. Cancer Res.60, 5558–5564 (2000). CASPubMed Google Scholar
Sharma, C., Pradeep, A., Wong, L., Rana, A. & Rana, B. Peroxisome proliferator-activated receptor γ activation can regulate β-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J. Biol. Chem.279, 35583–35594 (2004). ArticleCASPubMed Google Scholar
Wei, S. et al. Thiazolidinediones modulate the expression of β-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor γ. Mol. Pharmacol.72, 725–733 (2007). ArticleCASPubMed Google Scholar
Palakurthi, S. S., Aktas, H., Grubissich, L. M., Mortensen, R. M. & Halperin, J. A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res.61, 6213–6218 (2001). CASPubMed Google Scholar
Bae, M. A. & Song, B. J. Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells. Mol. Pharmacol.63, 401–408 (2003). ArticleCASPubMed Google Scholar
Zander, T. et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARγ. J. Neurochem.81, 1052–1060 (2002). ArticleCASPubMed Google Scholar
Shiau, C. W. et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res.65, 1561–1569 (2005). ArticleCASPubMed Google Scholar
Farrow, B. & Evers, B. M. Activation of PPARγ increases PTEN expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun.301, 50–53 (2003). ArticleCASPubMed Google Scholar
Lee, S. Y. et al. PPAR-γ agonist increase gefitinib's antitumor activity through PTEN expression. Lung Cancer51, 297–301 (2006). ArticlePubMed Google Scholar
Patel, L. et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol.11, 764–768 (2001). ArticleCASPubMed Google Scholar
Teresi, R. E. et al. Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone. Int. J. Cancer118, 2390–2398 (2006). ArticleCASPubMed Google Scholar
Zhang, W. et al. PPARγ activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404. Cancer Biol. Ther.5, 1008–1014 (2006). ArticleCASPubMed Google Scholar
Kim, K. Y., Kim, S. S. & Cheon, H. G. Differential anti-proliferative actions of peroxisome proliferator-activated receptor-γ agonists in MCF-7 breast cancer cells. Biochem. Pharmacol.72, 530–540 (2006). ArticleCASPubMed Google Scholar
Yan, K. H. et al. The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol. Carcinog.49, 235–246 (2010). ArticleCASPubMed Google Scholar
Kim, Y., Suh, N., Sporn, M. & Reed, J. C. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J. Biol. Chem.277, 22320–22329 (2002). ArticleCASPubMed Google Scholar
Schultze, K. et al. Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin. Apoptosis11, 1503–1512 (2006). ArticleCASPubMed Google Scholar
Wei, S., Yang, J., Lee, S. L., Kulp, S. K. & Chen, C. S. PPARγ-independent antitumor effects of thiazolidinediones. Cancer Lett.276, 119–124 (2009). ArticleCASPubMed Google Scholar
Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Rev. Immunol.10, 365–376 (2010). ArticleCAS Google Scholar
Adachi, M. et al. Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut55, 1104–1113 (2006). This study demonstrated that PPARγ inhibits inflammation in the gut and protects against inflammatory bowel, which may explain in part the protective nature of PPARγ in colorectal cancer. ArticleCASPubMedPubMed Central Google Scholar
Shah, Y. M., Morimura, K. & Gonzalez, F. J. Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol.292, G657–G666 (2007). ArticleCASPubMed Google Scholar
Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004). ArticleCASPubMed Google Scholar
Lefebvre, A. M. et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APC_Min_/+ mice. Nature Med.4, 1053–1057 (1998). ArticleCASPubMed Google Scholar
Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nature Med.4, 1058–1061 (1998). ArticleCASPubMed Google Scholar
Pino, M. V., Kelley, M. F. & Jayyosi, Z. Promotion of colon tumors in C57BL/6J-APCmin/+ mice by thiazolidinedione PPARγ agonists and a structurally unrelated PPARγ agonist. Toxicol. Pathol.32, 58–63 (2004). ArticleCASPubMed Google Scholar
Yang, K. et al. Peroxisome proliferator-activated receptor γ agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in _Apc_1638 N/+Mlh1+/− double mutant mice. Int. J. Cancer116, 495–499 (2005). ArticleCASPubMed Google Scholar
Lubet, R. A. et al. Rosiglitazone, a PPARγ agonist: potent promoter of hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers. Int. J. Cancer123, 2254–2259 (2008). ArticleCASPubMed Google Scholar
Piccinni, C., Motola, D., Marchesini, G. & Poluzzi, E. Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting. Diabetes Care34, 1369–1371 (2011). ArticlePubMedPubMed Central Google Scholar
Fenner, M. H. & Elstner, E. Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer. Expert Opin. Investig. Drugs14, 557–568 (2005). ArticleCASPubMed Google Scholar
Li, Y. & Lazar, M. A. Differential gene regulation by PPARγ agonist and constitutively active PPARγ2. Mol. Endocrinol.16, 1040–1048 (2002). CASPubMed Google Scholar
Panigrahy, D. et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl Acad. Sci. USA105, 985–990 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pozzi, A. et al. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J. Biol. Chem.282, 17685–17695 (2007). ArticleCASPubMed Google Scholar
Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev.25, 409–416 (2006). ArticleCASPubMed Google Scholar
Aoyama, A. et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J. Biol. Chem.273, 5678–5684 (1998). ArticleCASPubMed Google Scholar
Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg's contributions to current concepts of cancer metabolism. Nature Rev. Cancer11, 325–337 (2011). ArticleCAS Google Scholar
Tsugane, S. & Inoue, M. Insulin resistance and cancer: epidemiological evidence. Cancer Sci.101, 1073–1079 (2010). ArticleCASPubMed Google Scholar
Wolin, K. Y., Carson, K. & Colditz, G. A. Obesity and cancer. Oncologist15, 556–565 (2011). Article Google Scholar
Kasuga, J. et al. Novel biphenylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ selective antagonists. Bioorg. Med. Chem. Lett.19, 6595–6599 (2009). ArticleCASPubMed Google Scholar
Naruhn, S. et al. High affinity peroxisome proliferator-activated receptor β/δ-specific ligands with pure antagonistic or inverse agonistic properties. Mol. Pharmacol.80, 828–838 (2011). ArticleCASPubMed Google Scholar
Shearer, B. G. et al. Identification and characterization of a selective peroxisome proliferator-activated receptor β/δ (NR1C2) antagonist. Mol. Endocrinol.22, 523–529 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shearer, B. G. et al. Identification and characterization of 4-chloro-_N_-(2-{[5-trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), a selective and irreversible peroxisome proliferator-activated receptor δ (PPARδ) antagonist. J. Med. Chem.53, 1857–1861 (2010). ArticleCASPubMed Google Scholar
Zaveri, N. T. et al. A novel peroxisome proliferator-activated receptor δ antagonist, SR13904, has anti-proliferative activity in human cancer cells. Cancer Biol. Ther.8, 1252–1261 (2009). ArticleCASPubMed Google Scholar
Demetri, G. D. & et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA96, 3951–3956 (1999). ArticleCASPubMedPubMed Central Google Scholar
Smith, M. R. et al. Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy. Cancer101, 1569–1574 (2004). ArticleCASPubMed Google Scholar
Hisatake, J. I. et al. Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor γ in human prostate cancer. Cancer Res.60, 5494–5498 (2000). CASPubMed Google Scholar
Mueller, E. et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl Acad. Sci. USA97, 10990–10995 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, G. K. et al. Phase I and pharmacokinetic study of LY293111, an orally bioavailable LTB4 receptor antagonist, in patients with advanced solid tumors. J. Clin. Oncol.23, 5365–5373 (2005). ArticleCASPubMed Google Scholar
Burstein, H. J. et al. Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res. Treat.79, 391–397 (2003). ArticleCASPubMed Google Scholar
Kulke, M. H. et al. A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J.8, 395–399 (2002). ArticlePubMed Google Scholar
Baetz, T. et al. A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours. Invest. New Drugs25, 217–225 (2007). ArticleCASPubMed Google Scholar
Read, W. L., Baggstrom, M. Q., Fracasso, P. M. & Govindan, R. A phase I study of bexarotene and rosiglitazone in patients with refractory cancers. Chemotherapy54, 236–241 (2008). ArticleCASPubMed Google Scholar
Hau, P. et al. Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-γ agonists in recurrent high-grade gliomas - a phase II study. Oncology73, 21–25 (2007). ArticleCASPubMed Google Scholar
Kebebew, E. et al. A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery140, 960–966; discussion 966–967 (2006). ArticlePubMed Google Scholar
Tepmongkol, S., Keelawat, S., Honsawek, S. & Ruangvejvorachai, P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-γ. Thyroid18, 697–704 (2008). ArticleCASPubMed Google Scholar
Kroll, T. G. et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma. Science289, 1357–1360 (2000). ArticleCASPubMed Google Scholar
Giordano, T. J. et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin. Cancer Res.12, 1983–1993 (2006). ArticleCASPubMed Google Scholar
Lacroix, L. et al. Follicular thyroid tumors with the PAX8-PPARγ1 rearrangement display characteristic genetic alterations. Am. J. Pathol.167, 223–231 (2005). ArticleCASPubMedPubMed Central Google Scholar
Erdmann, E., Charbonnel, B. & Wilcox, R. Thiazolidinediones and cardiovascular risk - a question of balance. Curr. Cardiol. Rev.5, 155–165 (2009). ArticleCASPubMedPubMed Central Google Scholar
Grey, A. et al. The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab.92, 1305–1310 (2007). ArticleCASPubMed Google Scholar
Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med.355, 2427–2443 (2006). ArticleCASPubMed Google Scholar
Schwartz, A. V. & Sellmeyer, D. E. Thiazolidinedione therapy gets complicated: is bone loss the price of improved insulin resistance? Diabetes Care30, 1670–1671 (2007). ArticleCASPubMed Google Scholar
Schwartz, A. V. et al. Thiazolidinedione use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab.91, 3349–3354 (2006). ArticleCASPubMed Google Scholar
Kodera, Y. et al. Ligand type-specific interactions of peroxisome proliferator-activated receptor γ with transcriptional coactivators. J. Biol. Chem.275, 33201–33204 (2000). ArticleCASPubMed Google Scholar
Zhang, Q., Zhou, H., Zhai, S. & Yan, B. Natural product-inspired synthesis of thiazolidine and thiazolidinone compounds and their anticancer activities. Curr. Pharm. Des.16, 1826–1842 (2010). ArticleCASPubMed Google Scholar
Burton, J. D., Castillo, M. E., Goldenberg, D. M. & Blumenthal, R. D. Peroxisome proliferator-activated receptor-γ antagonists exhibit potent antiproliferative effects versus many hematopoietic and epithelial cancer cell lines. Anticancer Drugs18, 525–534 (2007). ArticleCASPubMed Google Scholar
Lea, M. A., Sura, M. & Desbordes, C. Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) γ agonists and antagonists. Anticancer Res.24, 2765–2771 (2004). CASPubMed Google Scholar
Schaefer, K. L. et al. Peroxisome proliferator-activated receptor γ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res.65, 2251–2259 (2005). ArticleCASPubMed Google Scholar
Takahashi, H. et al. Inhibition of peroxisome proliferator-activated receptor γ activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Cancer Sci.97, 854–860 (2006). ArticleCASPubMed Google Scholar
Burton, J. D., Goldenberg, D. M. & Blumenthal, R. D. Potential of peroxisome proliferator-activated receptor γ antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res.2008, 494161 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Osborne, C. K. et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J. Natl Cancer Inst.87, 746–750 (1995). ArticleCASPubMed Google Scholar
Kohno, H., Suzuki, R., Sugie, S. & Tanaka, T. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer5, 46 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Niho, N. et al. Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands. Cancer Res.63, 6090–6095 (2003). CASPubMed Google Scholar
Tanaka, T. et al. Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res.61, 2424–2428 (2001). CASPubMed Google Scholar
Tenenbaum, A. et al. Does the lipid-lowering peroxisome proliferator-activated receptors ligand bezafibrate prevent colon cancer in patients with coronary artery disease? Cardiovasc. Diabetol.7, 18 (2008). This study suggests that the pan-PPAR agonist bezafibrate may prevent colon cancer in humans, supporting the hypothesis that targeting all three PPARs may be suitable for chemoprevention. ArticlePubMedPubMed CentralCAS Google Scholar
Jackson, L. et al. Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer. Gut52, 1317–1322 (2003). ArticleCASPubMedPubMed Central Google Scholar
Khanim, F. L. et al. Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia. PLoS ONE4, e8147 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Hayden, R. E. et al. Treatment of primary CLL cells with bezafibrate and medroxyprogesterone acetate induces apoptosis and represses the pro-proliferative signal of CD40-ligand, in part through increased 15dΔ12,14, PGJ2 . Leukemia23, 292–304 (2009). ArticleCASPubMed Google Scholar
Rubenstrunk, A., Hanf, R., Hum., D. W., Fruchart, J. C. & Staels, B. Safety issues and prospects for future generations of PPAR modulators. Biochim. Biophys. Acta1771, 1065–1081 (2007). ArticleCASPubMed Google Scholar
Peraza, M. A., Burdick, A. D., Marin, H. E., Gonzalez, F. J. & Peters, J. M. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol. Sci.90, 269–295 (2006). ArticleCASPubMed Google Scholar
Still, K., Grabowski, P., Mackie, I., Perry, M. & Bishop, N. The peroxisome proliferator activator receptor α/δ agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo. Calcif. Tissue Int.83, 285–292 (2008). ArticleCASPubMed Google Scholar
Brautigam, K. et al. Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines. J. Cancer Res. Clin. Oncol.137, 875–886 (2011). ArticleCASPubMed Google Scholar
Cesario, R. M., Stone, J., Yen, W. C., Bissonnette, R. P. & Lamph, W. W. Differentiation and growth inhibition mediated via the RXR:PPARγ heterodimer in colon cancer. Cancer Lett.240, 225–233 (2006). ArticleCASPubMed Google Scholar
Crowe, D. L. & Chandraratna, R. A. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res.6, R546–R555 (2004). ArticleCASPubMedPubMed Central Google Scholar
Desreumaux, P. et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor γ (PPARγ) heterodimer. A basis for new therapeutic strategies. J. Exp. Med.193, 827–838 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fu, H. et al. Chemoprevention of lung carcinogenesis by the combination of aerosolized budesonide and oral pioglitazone in A/J. mice. Mol. Carcinog.50, 913–921 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hamaguchi, N. et al. In vitro and in vivo therapeutic efficacy of the PPAR-γ agonist troglitazone in combination with cisplatin against malignant pleural mesothelioma cell growth. Cancer Sci.101, 1955–1964 (2010). ArticleCASPubMed Google Scholar
Park, B. H., Lee, S. B., Stolz, D. B., Lee, Y. J. & Lee, B. C. Synergistic interactions between heregulin and peroxisome proliferator-activated receptor-γ (PPARγ) agonist in breast cancer cells. J. Biol. Chem.286, 20087–20099 (2011). ArticleCASPubMedPubMed Central Google Scholar
Reddy, R. C. et al. Chemotherapeutic drugs induce PPARγ expression and show sequence-specific synergy with PPARγ ligands in inhibition of non-small cell lung cancer. Neoplasia10, 597–603 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tikoo, K., Kumar, P. & Gupta, J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer9, 107 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Yamazaki, K. et al. Synergistic effects of RXR α and PPAR γ ligands to inhibit growth in human colon cancer cells--phosphorylated RXR α is a critical target for colon cancer management. Gut56, 1557–1563 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yokoyama, Y., Xin, B., Shigeto, T. & Mizunuma, H. Combination of ciglitazone, a peroxisome proliferator-activated receptor γ ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. J. Cancer Res. Clin. Oncol.137, 1219–1228 (2011). ArticleCASPubMed Google Scholar
Fauconnet, S. et al. Differential regulation of vascular endothelial growth factor expression by peroxisome proliferator-activated receptors in bladder cancer cells. J. Biol. Chem.277, 23534–23543 (2002). ArticleCASPubMed Google Scholar
Meissner, M., Hrgovic, I., Doll, M. & Kaufmann, R. PPARδ agonists suppress angiogenesis in a VEGFR2-dependent manner. Arch. Dermatol. Res.303, 41–47 (2011). ArticleCASPubMed Google Scholar
Abdollahi, A. et al. Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc. Natl Acad. Sci. USA104, 12890–12895 (2007). ArticleCASPubMedPubMed Central Google Scholar
Müller-Brüsselbach, S. et al. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice. EMBO J.26, 3686–3698 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Piqueras, L. et al. Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol.27, 63–69 (2007). ArticleCASPubMed Google Scholar
Biscetti, F. et al. Selective activation of peroxisome proliferator-activated receptor (PPAR)α and PPARγ induces neoangiogenesis through a vascular endothelial growth factor-dependent mechanism. Diabetes57, 1394–1404 (2008). ArticleCASPubMed Google Scholar
Bishop-Bailey, D. & Hla, T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Δ12,14-prostaglandin J2 . J. Biol. Chem.274, 17042–17048 (1999). ArticleCASPubMed Google Scholar
Chu, K. et al. Peroxisome proliferator-activated receptor-γ-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia. Brain Res.1093, 208–218 (2006). ArticleCASPubMed Google Scholar
Huang, P. H. et al. Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice. Biomed. Pharmacother.62, 46–52 (2008). ArticleCASPubMed Google Scholar
Xin, X., Yang, S., Kowalski, J. & Gerritsen, M. E. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem.274, 9116–9121 (1999). ArticleCASPubMed Google Scholar
Chintalgattu, V., Harris, G. S., Akula, S. M. & Katwa, L. C. PPAR-γ agonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovasc. Res.74, 140–150 (2007). ArticleCASPubMed Google Scholar