The role of mast cells in neuroinflammation (original) (raw)
Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, Tenen DG, Austen KF, Akashi K (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102(50):18105–18110. doi:10.1073/pnas.0509148102 ArticlePubMedCAS Google Scholar
Bennett JL, Blanchet MR, Zhao L, Zbytnuik L, Antignano F, Gold M, Kubes P, McNagny KM (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182(9):5507–5514. doi:10.4049/jimmunol.0801485 ArticlePubMedCAS Google Scholar
Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18(1):1–9. doi:10.1111/j.1750-3639.2007.00092.x ArticlePubMedCAS Google Scholar
Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147. doi:10.3389/fimmu.2012.00147 ArticlePubMed Google Scholar
Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205(4):811–823. doi:10.1084/jem.20072404 ArticlePubMedCAS Google Scholar
Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179(5):2673–2679 (pii:179/5/2673) PubMedCAS Google Scholar
Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278(22):1815–1822 ArticlePubMedCAS Google Scholar
Couturier N, Zappulla JP, Lauwers-Cances V, Uro-Coste E, Delisle MB, Clanet M, Montagne L, Van der Valk P, Bo L, Liblau RS (2008) Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol 195(1–2):176–185. doi:10.1016/j.jneuroim.2008.01.017 ArticlePubMedCAS Google Scholar
Dropp JJ (1979) Mast cells in the human brain. Acta Anat (Basel) 105(4):505–513 ArticleCAS Google Scholar
Du T, Friend DS, Austen KF, Katz HR (1996) Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells. Clin Exp Immunol 103(2):316–321 ArticlePubMedCAS Google Scholar
Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Moller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and t cell-mediated autoimmunity. Immunity 35(5):832–844. doi:10.1016/j.immuni.2011.09.015 ArticlePubMedCAS Google Scholar
Galli SJ, Kitamura Y (1987) Genetically mast-cell-deficient W/Wv and Sl/Sld mice. Their value for the analysis of the roles of mast cells in biologic responses in vivo. Am J Pathol 127(1):191–198 PubMedCAS Google Scholar
Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529 (pii:20591c2466aedc19,222bcdb718a38c7c) ArticlePubMedCAS Google Scholar
Gordon JR, Galli SJ (1994) Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha. J Exp Med 180(6):2027–2037 ArticlePubMedCAS Google Scholar
Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848 ArticlePubMedCAS Google Scholar
Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8(10):1095–1104. doi:10.1038/ni1503 ArticlePubMedCAS Google Scholar
Hendrix S, Warnke K, Siebenhaar F, Peters EM, Nitsch R, Maurer M (2006) The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett 392(3):174–177 ArticlePubMedCAS Google Scholar
Henz BM, Maurer M, Lippert U, Worm M, Babina M (2001) Mast cells as initiators of immunity and host defense. Exp Dermatol 10(1):1–10 ArticlePubMedCAS Google Scholar
Hough LB (1988) Cellular localization and possible functions for brain histamine: recent progress. Prog Neurobiol 30(6):469–505 (pii:0301-0082(88)90032-9) ArticlePubMedCAS Google Scholar
Ibrahim MZ, Reder AT, Lawand R, Takash W, Sallouh-Khatib S (1996) The mast cells of the multiple sclerosis brain. J Neuroimmunol 70(2):131–138 (pii:0165-5728(96)00102-6) ArticlePubMedCAS Google Scholar
Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29(4–5):373–384. doi:10.1159/000105478 ArticlePubMedCAS Google Scholar
Johnson D, Krenger W (1992) Interactions of mast cells with the nervous system—recent advances. Neurochem Res 17(9):939–951 ArticlePubMedCAS Google Scholar
Karasuyama H, Mukai K, Tsujimura Y, Obata K (2009) Newly discovered roles for basophils: a neglected minority gains new respect. Nat Rev 9(1):9–13. doi:10.1038/nri2458 CAS Google Scholar
Kendall JC, Li XH, Galli SJ, Gordon JR (1997) Promotion of mouse fibroblast proliferation by IgE-dependent activation of mouse mast cells: role for mast cell tumor necrosis factor-alpha and transforming growth factor-beta 1. J Allergy Clin Immunol 99(1 Pt 1):113–123 (pii:S0091674997000055) PubMedCAS Google Scholar
Korkmaz OT, Tuncel N, Tuncel M, Oncu EM, Sahinturk V, Celik M (2010) Vasoactive intestinal peptide (VIP) treatment of Parkinsonian rats increases thalamic gamma-aminobutyric acid (GABA) levels and alters the release of nerve growth factor (NGF) by mast cells. J Mol Neurosci 41(2):278–287. doi:10.1007/s12031-009-9307-3 ArticlePubMedCAS Google Scholar
Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114(1):174–182. doi:10.1016/j.jaci.2004.03.049 ArticlePubMedCAS Google Scholar
Lassman AB, DeAngelis LM (2003) Brain metastases. Neurol Clin 21(1):1–23, vii Google Scholar
Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 187(1):274–282. doi:10.4049/jimmunol.1003603 ArticlePubMedCAS Google Scholar
Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30(4):689–702. doi:10.1038/jcbfm.2009.282 ArticlePubMed Google Scholar
Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508. doi:10.1038/nm0502-500 ArticlePubMedCAS Google Scholar
Lozada A, Maegele M, Stark H, Neugebauer EM, Panula P (2005) Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobiol 31(2):150–162. doi:10.1111/j.1365-2990.2004.00622.x ArticlePubMedCAS Google Scholar
Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26. doi:10.1016/j.bbcan.2009.02.001 PubMedCAS Google Scholar
Manni L, Micera A, Pistillo L, Aloe L (1998) Neonatal handling in EAE-susceptible rats alters NGF levels and mast cell distribution in the brain. Int J Dev Neurosci 16(1):1–8 (pii:S0736-5748(98)00003-3) ArticlePubMedCAS Google Scholar
Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev 4(10):787–799 ArticleCAS Google Scholar
Maslinska D, Laure-Kamionowska M, Maslinski KT, Gujski M, Maslinski S (2007) Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm Res 56(Suppl 1):S17–S18 ArticlePubMedCAS Google Scholar
Maurer M, Wedemeyer J, Metz M, Piliponsky AM, Weller K, Chatterjea D, Clouthier DE, Yanagisawa MM, Tsai M, Galli SJ (2004) Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432(7016):512–516. doi:10.1038/nature03085 ArticlePubMedCAS Google Scholar
McCurdy JD, Lin TJ, Marshall JS (2001) Toll-like receptor 4-mediated activation of murine mast cells. J Leukoc Biol 70(6):977–984 PubMedCAS Google Scholar
McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, Grencis RK (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA 100(13):7761–7766. doi:10.1073/pnas.1231488100 ArticlePubMedCAS Google Scholar
Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079 PubMedCAS Google Scholar
Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Pejler G, Tsai M, Galli SJ (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526–530. doi:10.1126/science.1128877 ArticlePubMedCAS Google Scholar
Miller HR, Pemberton AD (2002) Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105(4):375–390 (pii:1375) ArticlePubMedCAS Google Scholar
Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R (2008) Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA 105(46):18053–18057. doi:10.1073/pnas.0809479105 ArticlePubMedCAS Google Scholar
Neumann J (1890) Ueber das Vorkommen der sogenannten „Mastzellen” bei pathologischen Veränderungen des Gehirns. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 122(2)
Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, Gies JP (2009) Amyloid beta peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol 22(2):473–483 PubMedCAS Google Scholar
Schmidt OI, Infanger M, Hyde CE, Ertel W, Stahel PF (2004) The role of neuroinflammation in traumatic brain injury. Eur J Trauma 30:135–149 Article Google Scholar
Olsson Y (1974) Mast cells in plaques of multiple sclerosis. Acta Neurol Scand 50(5):611–618 ArticlePubMedCAS Google Scholar
Pang X, Letourneau R, Rozniecki JJ, Wang L, Theoharides TC (1996) Definitive characterization of rat hypothalamic mast cells. Neuroscience 73(3):889–902 (pii:0306-4522(95)00606-0) ArticlePubMedCAS Google Scholar
Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82(4):993–997 (pii:S0306452297003539) ArticlePubMedCAS Google Scholar
Piconese S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Pedotti R (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab Invest 91(4):627–641. doi:10.1038/labinvest.2011.3 ArticlePubMedCAS Google Scholar
Polajeva J, Sjosten AM, Lager N, Kastemar M, Waern I, Alafuzoff I, Smits A, Westermark B, Pejler G, Uhrbom L, Tchougounova E (2011) Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS ONE 6(9):e25222. doi:10.1371/journal.pone.0025222 ArticlePubMedCAS Google Scholar
Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390(6656):172–175. doi:10.1038/36586 ArticlePubMedCAS Google Scholar
Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141. doi:10.1002/ana.410090206 ArticlePubMed Google Scholar
Robbie-Ryan M, Tanzola MB, Secor VH, Brown MA (2003) Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J Immunol 170(4):1630–1634 PubMedCAS Google Scholar
Rodewald HR, Dessing M, Dvorak AM, Galli SJ (1996) Identification of a committed precursor for the mast cell lineage. Science 271(5250):818–822 ArticlePubMedCAS Google Scholar
Rozniecki JJ, Hauser SL, Stein M, Lincoln R, Theoharides TC (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37(1):63–66. doi:10.1002/ana.410370112 ArticlePubMedCAS Google Scholar
Sayed BA, Christy AL, Walker ME, Brown MA (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184(12):6891–6900. doi:10.4049/jimmunol.1000126 ArticlePubMedCAS Google Scholar
Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186(6):3294–3298. doi:10.4049/jimmunol.1003574 ArticlePubMedCAS Google Scholar
Secor VH, Secor WE, Gutekunst CA, Brown MA (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191(5):813–822 ArticlePubMedCAS Google Scholar
Shanas U, Bhasin R, Sutherland AK, Silverman AJ, Silver R (1998) Brain mast cells lack the c-kit receptor: immunocytochemical evidence. J Neuroimmunol 90(2):207–211 (pii:S0165572898001374) ArticlePubMedCAS Google Scholar
Sharma N, Kumar V, Everingham S, Mali RS, Kapur R, Zeng LF, Zhang ZY, Feng GS, Hartmann K, Roers A, Craig AW (2012) SH2 domain-containing phosphatase-2 is a critical regulator of connective tissue mast cell survival and homeostasis in mice. Mol Cell Biol. doi:10.1128/MCB.00308-12 Google Scholar
Shimada R, Nakao K, Furutani R, Kibayashi K (2012) A rat model of changes in dural mast cells and brain histamine receptor H3 expression following traumatic brain injury. J Clin Neurosci 19(3):447–451. doi:10.1016/j.jocn.2011.06.033 ArticlePubMedCAS Google Scholar
Silver R, Silverman AJ, Vitkovic L, Lederhendler II (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19(1):25–31 (pii:0166223696818637) ArticlePubMedCAS Google Scholar
Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20(1):401–408 PubMedCAS Google Scholar
Skaper SD, Facci L, Romanello S, Leon A (1996) Mast cell activation causes delayed neurodegeneration in mixed hippocampal cultures via the nitric oxide pathway. J Neurochem 66(3):1157–1166 ArticlePubMedCAS Google Scholar
Stelekati E, Bahri R, D’Orlando O, Orinska Z, Mittrucker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S (2009) Mast cell-mediated antigen presentation regulates CD8 + T cell effector functions. Immunity 31(4):665–676. doi:1016/j.immuni.2009.08.022 ArticlePubMedCAS Google Scholar
Stokely ME, Orr EL (2008) Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma 25(1):52–61. doi:10.1089/neu.2007.0397 ArticlePubMed Google Scholar
Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116(4):411–418. doi:10.1161/CIRCULATIONAHA.106.655423 ArticlePubMedCAS Google Scholar
Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26(5):605–612. doi:10.1038/sj.jcbfm.9600228 ArticlePubMed Google Scholar
Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2009) An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 41(6):438–450. doi:10.1080/07853890902887303 ArticlePubMedCAS Google Scholar
Strbian D, Tatlisumak T, Ramadan UA, Lindsberg PJ (2007) Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 27(4):795–802. doi:10.1038/sj.jcbfm.9600387 PubMed Google Scholar
Taiwo OB, Kovacs KJ, Sun Y, Larson AA (2005) Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice. Pain 114(1–2):131–140. doi:10.1016/j.pain.2004.12.002 ArticlePubMed Google Scholar
Tanzola MB, Robbie-Ryan M, Gutekunst CA, Brown MA (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171(8):4385–4391 PubMedCAS Google Scholar
Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822(1):21–33. doi:10.1016/j.bbadis.2010.12.014 ArticlePubMedCAS Google Scholar
Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P (2004) Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci 25(11):563–568. doi:10.1016/j.tips.2004.09.007 ArticlePubMedCAS Google Scholar
Theoharides TC, Rozniecki JJ, Sahagian G, Jocobson S, Kempuraj D, Conti P, Kalogeromitros D (2008) Impact of stress and mast cells on brain metastases. J Neuroimmunol 205(1–2):1–7. doi:10.1016/j.jneuroim.2008.09.014 ArticlePubMedCAS Google Scholar
Tuncel N, Sener E, Cerit C, Karasu U, Gurer F, Sahinturk V, Baycu C, Ak D, Filiz Z (2005) Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson’s disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 26(5):827–836. doi:10.1016/j.peptides.2004.12.019 ArticlePubMedCAS Google Scholar
Walker ME, Hatfield JK, Brown MA (2011) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta. doi:10.1016/j.bbadis.2011.02.009 PubMed Google Scholar
Welle M (1997) Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol 61(3):233–245 PubMedCAS Google Scholar
Zappulla JP, Arock M, Mars LT, Liblau RS (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131(1–2):5–20 ArticlePubMedCAS Google Scholar