Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676. doi:10.1038/163676a0 ArticleCASPubMed Google Scholar
Barton DE, David FN, Merrington M (1965) The relative positions of the chromosomes in the human cell in mitosis. Ann Hum Genet 29:139–146 ArticleCASPubMed Google Scholar
Booth DG, Takagi M, Sanchez-Pulido L et al (2014) Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife 2014:1–22. doi:10.7554/eLife.01641.001 Google Scholar
Bourgeois CA, Laquerriere F, Hemon D et al (1985) New data on the in situ position of the inactive X chromosome in the interphase nucleus of human fibroblasts. Hum Genet 69:122–129. doi:10.1007/BF00293281 ArticleCASPubMed Google Scholar
Bridger JM, Kill IR, Lichter P (1998) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosom Res 6:13–24. doi:10.1023/A:1009210206855 ArticleCAS Google Scholar
Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44. doi:10.1038/349038a0 ArticleCASPubMed Google Scholar
Bugler B, Caizergues-Ferrer M, Bouche G et al (1982) Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem 128:475–480 ArticleCASPubMed Google Scholar
Bullwinkel J, Baron-Lühr B, Lüdemann A et al (2006) Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 206:624–35. doi:10.1002/jcp.20494 ArticleCASPubMed Google Scholar
Chen H, Tian Y, Shu W et al (2012) Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS One. doi:10.1371/journal.pone.0041374 Google Scholar
Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275. doi:10.1083/jcb.132.3.259 ArticleCASPubMed Google Scholar
Cuddapah S, Jothi R, Schones DE et al (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19:24–32. doi:10.1101/gr.082800.108 ArticleCASPubMedPubMed Central Google Scholar
Escande ML, Gas N, Stevens BJ (1985) Immunolocalization of the 100 K nucleolar protein in CHO cells. Biol Cell 53:99–109 ArticleCASPubMed Google Scholar
Fedoriw AM, Calabrese JM, Mu W et al (2012a) Differentiation-driven nucleolar association of the mouse imprinted Kcnq1 locus. G3 (Bethesda) 2:1521–8. doi:10.1534/g3.112.004226 ArticleCAS Google Scholar
Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32:426–431. doi:10.1038/ng988 ArticleCASPubMed Google Scholar
Gaillard PH, Martini EM, Kaufman PD et al (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–96 ArticleCASPubMed Google Scholar
Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31:13–20. doi:10.1002/ijc.2910310104 ArticleCASPubMed Google Scholar
Ghetti A, Piñol-Roma S, Michael WM et al (1992) hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678 ArticleCASPubMedPubMed Central Google Scholar
Grosshans H, Deinert K, Hurt E, Simos G (2001) Biogenesis of the Signal Recognition Particle (Srp) involves import of Srp proteins into the nucleolus, assembly with the Srp-Rna, and Xpo1p-mediated export. J Cell Biol 153:745–762. doi:10.1083/jcb.153.4.745 ArticleCASPubMedPubMed Central Google Scholar
Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51. doi:10.1038/nature06947 ArticleCASPubMed Google Scholar
Hall MP, Huang S, Black DL (2004) Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 15:774–786. doi:10.1091/mbc.E03-09-0692 ArticleCASPubMedPubMed Central Google Scholar
Heitz E (1931) Nukleolar und chromosomen in der gattung. Vicia Planta 15:495–505 Article Google Scholar
Huang H, Yu Z, Zhang S et al (2010) Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 123:2853–61. doi:10.1242/jcs.063610 ArticleCASPubMed Google Scholar
Huang K, Jia J, Wu C et al (2013) Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 288:26067–26077. doi:10.1074/jbc.M113.486175 ArticleCASPubMedPubMed Central Google Scholar
Jacobson MR, Pederson T (1998) Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 95:7981–7986 ArticleCASPubMedPubMed Central Google Scholar
Kamath RV, Thor AD, Wang C et al (2005) Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res 65:246–253 CASPubMed Google Scholar
Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114. doi:10.1016/S0092-8674(05)80015-7 ArticleCASPubMed Google Scholar
Kill IR (1996) Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci 109(Pt 6):1253–1263 CASPubMed Google Scholar
Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71:4098–4102 CASPubMedPubMed Central Google Scholar
Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE (2011) Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet. doi:10.1371/journal.pgen.1002015 PubMedPubMed Central Google Scholar
Lischwe MA, Richards RL, Busch RK, Busch H (1981) Localization of phosphoprotein C23 to nucleolar structures and to the nucleolus organizer regions. Exp Cell Res 136:101–109. doi:10.1016/0014-4827(81)90041-0 ArticleCASPubMed Google Scholar
Lukášová E, Kozubek S, Kozubek M et al (1997) Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum Genet 100:525–535. doi:10.1007/s004390050547 ArticlePubMed Google Scholar
Martindill DMJ, Risebro CA, Smart N et al (2007) Nucleolar release of Hand1 acts as a molecular switch to determine cell fate. Nat Cell Biol 9:1131–41. doi:10.1038/ncb1633 ArticleCASPubMed Google Scholar
Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–93 ArticleCASPubMed Google Scholar
McClintock B (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikrosk 21:294–398 Article Google Scholar
McHugh CA, Chen CK, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. doi:10.1038/nature14443 Google Scholar
Murano K, Okuwaki M, Hisaoka M, Nagata K (2008) Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28:3114–3126. doi:10.1128/MCB.02078-07 ArticleCASPubMedPubMed Central Google Scholar
Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4:529–40 ArticleCASPubMed Google Scholar
Németh A, Längst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156 ArticlePubMedCAS Google Scholar
Neves H, Ramos C, da Silva MG et al (1999) The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93:1197–1207 CASPubMed Google Scholar
Pandey RR, Ceribelli M, Singh PB et al (2004) NF-Y regulates the antisense promoter, bidirectional silencing, and differential epigenetic marks of the Kcnq1 imprinting control region. J Biol Chem 279:52685–52693. doi:10.1074/jbc.M408084200 ArticleCASPubMed Google Scholar
Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246. doi:10.1016/j.molcel.2008.08.022 ArticleCASPubMed Google Scholar
Pickersgill H, Kalverda B, de Wit E et al (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–14. doi:10.1038/ng1852 ArticleCASPubMed Google Scholar
Quivy JP, Gérard A, Cook AJL et al (2008) The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 15:972–979. doi:10.1038/nsmb.1470 ArticleCASPubMed Google Scholar
Ragoczy T, Telling A, Scalzo D et al (2015) Functional redundancy in the nuclear compartmentalization of the late-replicating genome. Nucleus 5:626–635. doi:10.4161/19491034.2014.990863 Article Google Scholar
Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–7. doi:10.1038/nature06727 ArticleCASPubMed Google Scholar
Roger B, Moisand A, Amalric F, Bouvet P (2002) Repression of RNA polymerase I transcription by nucleolin is independent of the RNA sequence that is transcribed. J Biol Chem 277:10209–10219. doi:10.1074/jbc.M106412200 ArticleCASPubMed Google Scholar
Sáez-Vasquez J, Caparros-Ruiz D, Barneche F, Echeverría M (2004) A plant snoRNP complex containing snoRNAs, fibrillarin, and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol Cell Biol 24:7284–7297. doi:10.1128/MCB.24.16.7284-7297.2004 ArticlePubMedPubMed CentralCAS Google Scholar
Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25 ArticleCASPubMed Google Scholar
Smith CL, Matheson TD, Trombly DJ et al (2014) A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol Biol Cell 25:2866–81. doi:10.1091/mbc.E14-05-1029 ArticlePubMedPubMed CentralCAS Google Scholar
Spector DL, Ochs RL, Busch H (1984) Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma 90:139–148. doi:10.1007/BF00292451 ArticleCASPubMed Google Scholar
Steffensen DM, Duffey P, Prensky W (1974) Localisation of 5S ribosomal RNA genes on human chromosome 1. Nature 252:741–743 ArticleCASPubMed Google Scholar
Van Koningsbruggen S, Gierlinski M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748. doi:10.1091/mbc.E10-06-0508 ArticlePubMedPubMed CentralCAS Google Scholar
Van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428. doi:10.1038/74487 ArticlePubMedCAS Google Scholar
Volders PJ, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human IncRNA transcript sequences and structures. Nucleic Acids Res 41:246–251. doi:10.1093/nar/gks915 ArticleCAS Google Scholar
Wagner R 1835. Einige Bemerkungen und Fragen über das Keimbläschen (vesicular germinativa). Müller’s Archiv Anat Physiol Wissenschaft Med 373–377
Weierich C, Brero A, Stein S et al (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosom Res 11:485–502. doi:10.1023/A:1025016828544 ArticleCAS Google Scholar
Yang F, Deng X, Ma W et al (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. doi:10.1186/s13059-015-0618-0 Google Scholar
Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298. doi:10.1016/S1097-2765(04)00029-2 ArticleCASPubMed Google Scholar