Genetic pathways that regulate ageing in model organisms (original) (raw)

References

  1. Weindruch, R. H., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity, and lifetime energy intake. J. Nutr. 116, 641–654 (1986).
    Article CAS PubMed Google Scholar
  2. Harman, D. The aging process. Proc. Natl Acad. Sci. USA 78, 7124–7128 (1981).
    Article ADS CAS PubMed PubMed Central Google Scholar
  3. Finch, C. Longevity, senescence, and the genome (Univ. Chicago Press, Chicago, IL, 1990).
    Google Scholar
  4. Mortimer, R. K. & Johnston, J. R. Life span of individual yeast cells. Nature 183, 1751 –1752 (1959).
    Article ADS CAS PubMed Google Scholar
  5. Egilmez, N. K. & Jazwinski, S. M. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae . J Bacteriol. 171, 37– 42 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  6. Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91, 35–53 ( 1993).
    Article CAS PubMed Google Scholar
  7. Smeal, T., Claus, J., Kennedy, B., Cole, F. & Guarente, L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633–642 (1996).
    Article CAS PubMed Google Scholar
  8. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae . Genetics 116, 9–22 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  9. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751– 762 (1990).
    Article CAS PubMed Google Scholar
  10. Kennedy, B. K., Austriaco, N. R. Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–486 ( 1995).
    Article CAS PubMed Google Scholar
  11. Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997).
    Article CAS PubMed Google Scholar
  12. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255– 269 (1997).
    Article CAS PubMed Google Scholar
  13. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Kim, S., Benguria, A., Lai, C.-Y. & Jazwinski, M. Modulation of life span by histone deacetylase genes in S. cerevisiae. Mol. Biol. Cell 10, 3125–3136 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  15. Smith, J. S., Caputo, E. & Boeke, J. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin remodeling factors. Mol. Cell. Biol. 19, 3184–3197 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  16. Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771–776 ( 1989).
    Article CAS PubMed Google Scholar
  17. Sinclair, D. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033– 1042 (1997).
    Article CAS PubMed Google Scholar
  18. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999).
    Article CAS PubMed Google Scholar
  19. Heo, S. T., K., Ohsugi, I., Shimamoto, A., Furiuchi, Y. & Ikeda, I. Blooms syndrome gene suppresses premature aging causes by Sgs1 deficiency in yeast. Genes Cells 4, 619–624 (1999).
    Article CAS PubMed Google Scholar
  20. Ashrafi, K., Sinclair, D., Gordon, J. & Guarente, L. Passage through stationary phase advances replicative aging in S. cerevisiae. Proc. Natl Acad. Sci. USA 96, 9100– 9105 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  21. Sinclair, D., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313– 1316 (1997).
    Article CAS PubMed Google Scholar
  22. Celenza, J. L. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175– 1180 (1986).
    Article ADS CAS PubMed Google Scholar
  23. Ashrafi, K., Lin, S., Manchester, J. & Gordon, J. Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14, 1872–1885 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  24. Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).
    Article CAS PubMed Google Scholar
  25. Frye, R. A. Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).
    Article CAS PubMed Google Scholar
  26. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).
    Article CAS PubMed Google Scholar
  27. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast SIR2 protein that is essential for gene silencing. Cell 99, 735 –745 (1999).
    Article CAS PubMed Google Scholar
  28. Imai, S. I., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase. Nature 403, 795– 799 (2000).
    Article ADS CAS PubMed Google Scholar
  29. Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 ( 2000).
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).
    Article ADS CAS PubMed PubMed Central Google Scholar
  31. Lin, S., Defossez, P. & Guarente, L. Life span extension by calorie restriction in S. cerevisiae requires NAD and SIR2. Science 289, 2126–2128 (2000).
    Article ADS CAS PubMed Google Scholar
  32. Chen, J. B., Sun, J. & Jazwinski, S. M. Prolongation of the yeast life span by the v-Ha-Ras oncogene. Mol. Microbiol. 4, 2081– 2086 (1990).
    Article CAS PubMed Google Scholar
  33. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 ( 2000).
    Article CAS PubMed Google Scholar
  34. Kirchman, P. A., Sangkyu, K., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179–190 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  35. Parikh, V. S., Morgan, M., Scott, R., Clements, S. & Butow, R. A. The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235, 576 –580 (1987).
    Article ADS CAS PubMed Google Scholar
  36. Guarente, L. Do changes in chromosomes cause aging? Cell 86, 9–12 (1996).
    Article CAS PubMed Google Scholar
  37. Wareham, K. A., Lyon, M. F., Glenister, P. H. & Williams, E. D. Age related reactivation of an X-linked gene. Nature 327, 725–727 (1987).
    Article ADS CAS PubMed Google Scholar
  38. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).
    Article CAS PubMed Google Scholar
  39. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461– 464 (1993).
    Article ADS CAS PubMed Google Scholar
  40. Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  41. Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 ( 1996).
    Article ADS CAS PubMed Google Scholar
  42. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488 –2498 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  43. Paradis, S., Ailion, M., Toker, A., Thomas, J. H. & Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans . Genes Dev. 13, 1438– 1452 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  44. Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 ( 1998).
    Article CAS PubMed Google Scholar
  45. Gil, E. B., Link, E. M., Liu, L. X., Johnson, C. D. & Lees J. A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl Acad. Sci. USA 96, 2925 –2930 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  46. Rouault, J. P. et al. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr. Biol. 9, 329–332 ( 1999).
    Article CAS PubMed Google Scholar
  47. Mihaylova, V. T., Borland, C. Z., Manjarrez, L., Stern, M. J. & Sun, H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl Acad. Sci. USA 96, 7427–7432 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  48. Friedman, D. B. & Johnson, T. E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. 43, 102–109 (1988).
    Article Google Scholar
  49. Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  50. Kawano, T. et al. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 273, 431–436 (2000).
    Article CAS PubMed Google Scholar
  51. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans . Genetics 150, 129– 155 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  52. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).
    Article ADS CAS PubMed Google Scholar
  53. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).
    Article ADS CAS PubMed Google Scholar
  54. Nakae, J., Park, B. & Accili, D. Insulin stimulates phosphorylation of the Forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).
    Article CAS PubMed Google Scholar
  55. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).
    Article CAS PubMed Google Scholar
  56. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor Forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).
    Article CAS PubMed Google Scholar
  57. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630– 634 (1999).
    Article ADS CAS PubMed Google Scholar
  58. Biggs, W. H. III, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7460 ( 1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  59. Riddle, D. L. & Albert, P. S. in C. elegans Vol. II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 739–768 (Cold Spring Harbor Laboratory Press, 1997).
    Google Scholar
  60. Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703– 717 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  61. Vanfleteren, J. R. & De Vreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J. 9, 1355–1361 (1995).
    Article CAS PubMed Google Scholar
  62. Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl Acad. Sci. USA 96, 11399–11403 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  63. Gottlieb, S. & Ruvkun, G. daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137, 107–120 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  64. Vowels, J. J. & Thomas, J. H. Genetic analysis of chemosensory control of dauer formation in C. elegans. Genetics 130, 105–123 (1992)
    Article CAS PubMed PubMed Central Google Scholar
  65. Apfeld, J. & Kenyon, C. Cell nonautonomy of C. elegans DAF-2 function in the regulation of diapause and life span. Cell 95, 199–210 ( 1998).
    Article CAS PubMed Google Scholar
  66. Larsen, P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 8905– 8909 (1993).
    Article ADS CAS PubMed PubMed Central Google Scholar
  67. Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540 –7544 (1995).
    Article ADS CAS PubMed PubMed Central Google Scholar
  68. Murakami, S. & Johnson, T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207–1218 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  69. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999).
    Article ADS CAS PubMed Google Scholar
  70. Ailion, M., Inoue, T., Weaver, C. I., Holdcraft, R. W. & Thomas, J. H. Neurosecretory control of aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 96, 7394–7397 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  71. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).
    Article ADS CAS PubMed Google Scholar
  72. Antebi, A., Yeh, W., Tait,, D., Hedgecock, E. M. & Riddle, D. L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 14, 1512–1527 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  73. Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science 286, 2521– 2524 (1999).
    Article CAS PubMed Google Scholar
  74. Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282 , 943–946 (1998).
    Article ADS CAS PubMed Google Scholar
  75. Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G. T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet. 12, 362–370 (1991).
    Article CAS PubMed Google Scholar
  76. Service, P. M., Hutchinson, E. W., MacKinley, M. D. & Rose, M. R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58, 380–389 (1985).
    Article Google Scholar
  77. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59– 63 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  78. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402 , 309–313 (1999).
    Article ADS CAS PubMed Google Scholar
  79. Taub, J. et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-2 and clk-1 mutants. Nature 399, 162–166 (1999).
    Article ADS CAS PubMed Google Scholar
  80. Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).
    Article CAS PubMed Google Scholar
  81. Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394 , 694–697 (1998).
    Article ADS CAS PubMed Google Scholar
  82. Melov, S. et al. Extension of life-span with superoxide dismutase/catalase mimetics . Science 289, 1567–1569 (2000).
    Article ADS CAS PubMed Google Scholar
  83. Sun, J. & Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216–228 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  84. Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171–174 (1998).
    Article CAS PubMed Google Scholar
  85. Branicky, R., Benard, C. & Hekimi S. clk-1, mitochondria, and physiological rates. BioEssays 22, 48–56 ( 2000).
    Article CAS PubMed Google Scholar
  86. Klass, M. R. Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).
    Article CAS PubMed Google Scholar
  87. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 ( 1993).
    Article CAS PubMed PubMed Central Google Scholar
  88. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  89. Murakami, S. & Johnson, T. E. Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr. Biol. 9, 791–795 ( 1998).
    Article Google Scholar
  90. Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency . Nature Genet. 18, 147– 149 (1998).
    Article CAS PubMed Google Scholar
  91. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the aging process. Nature 384, 33 (1996).
    Article ADS CAS PubMed Google Scholar
  92. Bartke, A. et al. Does growth hormone prevent or accelerate aging? Exp. Gerontol. 33, 675–687 (1998)
    Article CAS PubMed Google Scholar
  93. Kopchick, J. J. & Laron, Z. Is the Laron mouse an accurate model of Laron syndrome? Molec. Gen. Metab. 68, 232–236 (1999)
    Article CAS Google Scholar
  94. Hunter, W. S., Croson, W. B., Bartke, A., Gentry, M. V. & Meliska, C. J. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 67, 433–437 (1999).
    Article CAS PubMed Google Scholar
  95. Brown-Borg, H. M. & Rakoczya, S. G. Catalase expression in delayed and premature aging mouse models. Exp. Geron. 35, 199–212 (1999).
    Article Google Scholar
  96. Hauck, S. J. & Bartke, A. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radical Biol. Med. 28, 970–978 ( 2000).
    Article CAS Google Scholar
  97. Wolkow, C. A., Kimura, K. D., Lee, M.-S. & Ruvkun, G. Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290, 147– 150 (2000).
    Article ADS CAS PubMed Google Scholar

Download references