Genetic pathways that regulate ageing in model organisms (original) (raw)
References
Weindruch, R. H., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity, and lifetime energy intake. J. Nutr.116, 641–654 (1986). ArticleCASPubMed Google Scholar
Egilmez, N. K. & Jazwinski, S. M. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae . J Bacteriol.171, 37– 42 (1989). ArticleCASPubMedPubMed Central Google Scholar
Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica91, 35–53 ( 1993). ArticleCASPubMed Google Scholar
Smeal, T., Claus, J., Kennedy, B., Cole, F. & Guarente, L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell84, 633–642 (1996). ArticleCASPubMed Google Scholar
Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae . Genetics116, 9–22 (1987). ArticleCASPubMedPubMed Central Google Scholar
Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63, 751– 762 (1990). ArticleCASPubMed Google Scholar
Kennedy, B. K., Austriaco, N. R. Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell80, 485–486 ( 1995). ArticleCASPubMed Google Scholar
Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev.11, 241–254 (1997). ArticleCASPubMed Google Scholar
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev.11, 255– 269 (1997). ArticleCASPubMed Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kim, S., Benguria, A., Lai, C.-Y. & Jazwinski, M. Modulation of life span by histone deacetylase genes in S. cerevisiae. Mol. Biol. Cell10, 3125–3136 (1999). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. S., Caputo, E. & Boeke, J. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin remodeling factors. Mol. Cell. Biol.19, 3184–3197 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell56, 771–776 ( 1989). ArticleCASPubMed Google Scholar
Sinclair, D. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell91, 1033– 1042 (1997). ArticleCASPubMed Google Scholar
Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell3, 447–455 (1999). ArticleCASPubMed Google Scholar
Heo, S. T., K., Ohsugi, I., Shimamoto, A., Furiuchi, Y. & Ikeda, I. Blooms syndrome gene suppresses premature aging causes by Sgs1 deficiency in yeast. Genes Cells4, 619–624 (1999). ArticleCASPubMed Google Scholar
Ashrafi, K., Sinclair, D., Gordon, J. & Guarente, L. Passage through stationary phase advances replicative aging in S. cerevisiae. Proc. Natl Acad. Sci. USA96, 9100– 9105 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Sinclair, D., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science277, 1313– 1316 (1997). ArticleCASPubMed Google Scholar
Celenza, J. L. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science233, 1175– 1180 (1986). ArticleADSCASPubMed Google Scholar
Ashrafi, K., Lin, S., Manchester, J. & Gordon, J. Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae. Genes Dev.14, 1872–1885 (2000). ArticleCASPubMedPubMed Central Google Scholar
Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev.9, 2888–2902 (1995). ArticleCASPubMed Google Scholar
Frye, R. A. Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun.260, 273–279 (1999). ArticleCASPubMed Google Scholar
Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7, 592–604 (1993). ArticleCASPubMed Google Scholar
Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast SIR2 protein that is essential for gene silencing. Cell99, 735 –745 (1999). ArticleCASPubMed Google Scholar
Imai, S. I., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase. Nature403, 795– 799 (2000). ArticleADSCASPubMed Google Scholar
Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA97, 6658–6663 ( 2000). ArticleADSCASPubMedPubMed Central Google Scholar
Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA97, 5807–5811 (2000). ArticleADSCASPubMedPubMed Central Google Scholar
Lin, S., Defossez, P. & Guarente, L. Life span extension by calorie restriction in S. cerevisiae requires NAD and SIR2. Science289, 2126–2128 (2000). ArticleADSCASPubMed Google Scholar
Chen, J. B., Sun, J. & Jazwinski, S. M. Prolongation of the yeast life span by the v-Ha-Ras oncogene. Mol. Microbiol.4, 2081– 2086 (1990). ArticleCASPubMed Google Scholar
Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev.14, 1021–1026 ( 2000). ArticleCASPubMed Google Scholar
Kirchman, P. A., Sangkyu, K., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics152, 179–190 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Parikh, V. S., Morgan, M., Scott, R., Clements, S. & Butow, R. A. The mitochondrial genotype can influence nuclear gene expression in yeast. Science235, 576 –580 (1987). ArticleADSCASPubMed Google Scholar
Wareham, K. A., Lyon, M. F., Glenister, P. H. & Williams, E. D. Age related reactivation of an X-linked gene. Nature327, 725–727 (1987). ArticleADSCASPubMed Google Scholar
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science277, 942–946 (1997). ArticleCASPubMed Google Scholar
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature366, 461– 464 (1993). ArticleADSCASPubMed Google Scholar
Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics139, 1567–1583 (1995). ArticleCASPubMedPubMed Central Google Scholar
Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature382, 536–539 ( 1996). ArticleADSCASPubMed Google Scholar
Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev.12, 2488 –2498 (1998). ArticleCASPubMedPubMed Central Google Scholar
Paradis, S., Ailion, M., Toker, A., Thomas, J. H. & Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans . Genes Dev.13, 1438– 1452 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell2, 887–893 ( 1998). ArticleCASPubMed Google Scholar
Gil, E. B., Link, E. M., Liu, L. X., Johnson, C. D. & Lees J. A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl Acad. Sci. USA96, 2925 –2930 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Rouault, J. P. et al. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr. Biol.9, 329–332 ( 1999). ArticleCASPubMed Google Scholar
Mihaylova, V. T., Borland, C. Z., Manjarrez, L., Stern, M. J. & Sun, H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl Acad. Sci. USA96, 7427–7432 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Friedman, D. B. & Johnson, T. E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol.43, 102–109 (1988). Article Google Scholar
Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics141, 1399–1406 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kawano, T. et al. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Comm.273, 431–436 (2000). ArticleCASPubMed Google Scholar
Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans . Genetics150, 129– 155 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science278, 1319–1322 (1997). ArticleADSCASPubMed Google Scholar
Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature389, 994–999 (1997). ArticleADSCASPubMed Google Scholar
Nakae, J., Park, B. & Accili, D. Insulin stimulates phosphorylation of the Forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J. Biol. Chem.274, 15982–15985 (1999). ArticleCASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor Forkhead family member FKHR by protein kinase B. J. Biol. Chem.274, 17179–17183 (1999). ArticleCASPubMed Google Scholar
Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature398, 630– 634 (1999). ArticleADSCASPubMed Google Scholar
Biggs, W. H. III, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA96, 7421–7460 ( 1999). ArticleADSCASPubMedPubMed Central Google Scholar
Riddle, D. L. & Albert, P. S. in C. elegans Vol. II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 739–768 (Cold Spring Harbor Laboratory Press, 1997). Google Scholar
Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics148, 703– 717 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vanfleteren, J. R. & De Vreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J.9, 1355–1361 (1995). ArticleCASPubMed Google Scholar
Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl Acad. Sci. USA96, 11399–11403 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Gottlieb, S. & Ruvkun, G. daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics137, 107–120 (1994). ArticleCASPubMedPubMed Central Google Scholar
Apfeld, J. & Kenyon, C. Cell nonautonomy of C. elegans DAF-2 function in the regulation of diapause and life span. Cell95, 199–210 ( 1998). ArticleCASPubMed Google Scholar
Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA92, 7540 –7544 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Murakami, S. & Johnson, T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics143, 1207–1218 (1996). ArticleCASPubMedPubMed Central Google Scholar
Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature402, 804–809 (1999). ArticleADSCASPubMed Google Scholar
Ailion, M., Inoue, T., Weaver, C. I., Holdcraft, R. W. & Thomas, J. H. Neurosecretory control of aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA96, 7394–7397 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature399, 362–366 (1999). ArticleADSCASPubMed Google Scholar
Antebi, A., Yeh, W., Tait,, D., Hedgecock, E. M. & Riddle, D. L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev.14, 1512–1527 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science286, 2521– 2524 (1999). ArticleCASPubMed Google Scholar
Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science282 , 943–946 (1998). ArticleADSCASPubMed Google Scholar
Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G. T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet.12, 362–370 (1991). ArticleCASPubMed Google Scholar
Service, P. M., Hutchinson, E. W., MacKinley, M. D. & Rose, M. R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool.58, 380–389 (1985). Article Google Scholar
Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature402 , 309–313 (1999). ArticleADSCASPubMed Google Scholar
Taub, J. et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-2 and clk-1 mutants. Nature399, 162–166 (1999). ArticleADSCASPubMed Google Scholar
Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J.13, 1385–1393 (1999). ArticleCASPubMed Google Scholar
Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature394 , 694–697 (1998). ArticleADSCASPubMed Google Scholar
Melov, S. et al. Extension of life-span with superoxide dismutase/catalase mimetics . Science289, 1567–1569 (2000). ArticleADSCASPubMed Google Scholar
Sun, J. & Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol.19, 216–228 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet.19, 171–174 (1998). ArticleCASPubMed Google Scholar
Branicky, R., Benard, C. & Hekimi S. clk-1, mitochondria, and physiological rates. BioEssays22, 48–56 ( 2000). ArticleCASPubMed Google Scholar
Klass, M. R. Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev.6, 413–429 (1977). ArticleCASPubMed Google Scholar
Murakami, S. & Johnson, T. E. Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr. Biol.9, 791–795 ( 1998). Article Google Scholar
Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency . Nature Genet.18, 147– 149 (1998). ArticleCASPubMed Google Scholar
Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the aging process. Nature384, 33 (1996). ArticleADSCASPubMed Google Scholar
Bartke, A. et al. Does growth hormone prevent or accelerate aging? Exp. Gerontol.33, 675–687 (1998) ArticleCASPubMed Google Scholar
Kopchick, J. J. & Laron, Z. Is the Laron mouse an accurate model of Laron syndrome? Molec. Gen. Metab.68, 232–236 (1999) ArticleCAS Google Scholar
Hunter, W. S., Croson, W. B., Bartke, A., Gentry, M. V. & Meliska, C. J. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav.67, 433–437 (1999). ArticleCASPubMed Google Scholar
Brown-Borg, H. M. & Rakoczya, S. G. Catalase expression in delayed and premature aging mouse models. Exp. Geron.35, 199–212 (1999). Article Google Scholar
Hauck, S. J. & Bartke, A. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radical Biol. Med.28, 970–978 ( 2000). ArticleCAS Google Scholar
Wolkow, C. A., Kimura, K. D., Lee, M.-S. & Ruvkun, G. Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science290, 147– 150 (2000). ArticleADSCASPubMed Google Scholar