Control of developmental timing in animals (original) (raw)
Gellon, G. & McGinnis, W. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays20, 116–125 (1998). ArticleCASPubMed Google Scholar
Zarkower, D. Establishing sexual dimorphism: conservation amidst diversity? Nature Rev. Genet.2, 175–185 (2001). ArticleCASPubMed Google Scholar
Ferrier, D. E. & Holland, P. W. Ancient origin of the Hox gene cluster. Nature Rev. Genet.2, 33–38 (2001). ArticleCASPubMed Google Scholar
Simon, M.-N., Pelegrini, O., Vernon, M. & Kay, R. R. Mutation of protein kinase A causes heterochronic development of Dictyostelium. Nature356, 171–172 (1992). ArticleCASPubMed Google Scholar
Ebens, A. J., Garren, H., Cheyette, B. N. R. & Zipursky, S. L. The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell74, 15–27 (1993). ArticleCASPubMed Google Scholar
Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science226, 409–416 (1984). ArticleCASPubMed Google Scholar
Evans, M. M. S., Passas, H. J. & Poethig, R. S. Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development120, 1971–1981 (1994). CASPubMed Google Scholar
Dudley, M. & Poethig, R. S. The heterochronic Teopod1 and Teopod2 mutations of maize are expressed non-cell-autonomously. Genetics133, 389–399 (1993). CASPubMedPubMed Central Google Scholar
Dudley, M. & Poethig, R. S. The effect of a heterochronic mutation, Teopod2, on the cell lineage of the maize shoot. Development111, 733–739 (1991). CASPubMed Google Scholar
Telfer, A. & Poethig, R. S. HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development125, 1889–1898 (1998). CASPubMed Google Scholar
Berardini, T. Z., Bollman, K., Sun, H. & Poethig, R. S. Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science291, 2405–2407 (2001). ArticleCASPubMed Google Scholar
Itoh, J. I., Hasegawa, A., Kitano, H. & Nagato, Y. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell10, 1511–1522 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol.56, 110–156 (1977). ArticleCASPubMed Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100, 64–119 (1983). ArticleCASPubMed Google Scholar
Hallam, S. J. & Jin, Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature395, 78–82 (1998). ArticleCASPubMed Google Scholar
Liu, Z. & Ambros, V. Heterochronic genes control the stage-specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes Dev.3, 2039–2049 (1989). ArticleCASPubMed Google Scholar
Euling, S. & Ambros, V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulva precursor cells. Cell84, 667–676 (1996). ArticleCASPubMed Google Scholar
Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell57, 49–57 (1989).lin-4, lin-14, lin-28andlin-29, first described as heterochronic genes in reference6, are masterfully ordered into a genetic regulatory hierarchy with respect to the control of seam-cell terminal differentiation. ArticleCASPubMed Google Scholar
Singh, R. N. & Sulston, J. E. Some observations on moulting in Caenorhabditis elegans. Nematologica24, 63–71 (1978). Article Google Scholar
Cox, G. N., Staprans, S. & Edgar, R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev. Biol.86, 456–470 (1981). ArticleCASPubMed Google Scholar
Cox, G. N. & Hirsh, D. Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol. Cell. Biol.5, 363–372 (1985). ArticleCASPubMedPubMed Central Google Scholar
Liu, Z., Kirch, S. & Ambros, V. The heterochronic gene pathway controls stage-specific transcription of C. elegans collagen genes. Development121, 2471–2478 (1995). CASPubMed Google Scholar
Ambros, V. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev.10, 428–433 (2000). ArticleCASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993).The cloning oflin-4and the surprising finding that it encodes a small regulatory RNA molecule, and together with reference36, the identification oflin-14as a target. ArticleCASPubMed Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000).Identification oflet-7as the second, small regulatory RNA in the heterochronic gene pathway, and demonstration thatlin-41is downregulated during late post-embryonic development in alet-7-dependent manner. ArticleCASPubMed Google Scholar
Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature408, 86–89 (2000).let-7RNA is shown to be evolutionarily conserved from worms to humans, and intriguing patterns of developmentally regulated expression observed in some organisms, raises the possibility that a temporal-regulatory function has also been conserved. ArticleCASPubMed Google Scholar
Ambros, V. & Horvitz, H. R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev.1, 398–414 (1987). ArticleCASPubMed Google Scholar
Ambros, V. & Moss, E. G. Heterochronic genes and the temporal control of C. elegans development. Trends Genet.10, 123–127 (1994). ArticleCASPubMed Google Scholar
Reinhart, B. J. & Ruvkun, G. Isoform-specific mutations in the Caenorhabditis elegans heterochronic gene lin-14 affect stage-specific patterning. Genetics157, 199–209 (2001). CASPubMedPubMed Central Google Scholar
Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature338, 313–319 (1989). ArticleCASPubMed Google Scholar
Arasu, P. A., Wightman, B. & Ruvkun, G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev.5, 1825–1833 (1991). ArticleCASPubMed Google Scholar
Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell88, 637–646 (1997).The identification oflin-28as a probable RNA-binding protein and the demonstration of a second target of thelin-4RNA. ArticleCASPubMed Google Scholar
Ruvkun, G. et al. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics121, 501–516 (1989). CASPubMedPubMed Central Google Scholar
Hong, Y., Lee, R. C. & Ambros, V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol. Cell. Biol.20, 2285–2295 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). ArticleCASPubMed Google Scholar
Feinbaum, R. & Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol.210, 87–95 (1999). ArticleCASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Jeon, M., Gardner, H. F., Miller, E. A., Deshler, J. & Rougvie, A. E. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science286, 1141–1146 (1999).Demonstration thatlin-42encodes a PAS-domain protein most similar to that ofDrosophilaPer, thereby providing a molecular link between the circadian and developmental timing pathways. Also,lin-42mRNA levels are shown to oscillate relative to the molting cycles of post-embryonic development. ArticleCASPubMed Google Scholar
Liu, Z. Genetic Control of Stage-Specific Developmental Events in C. elegans. PhD thesis, Harvard Univ., Cambridge, Massachusets (1990). Google Scholar
Young, M. W. Life's 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem. Sci.25, 601–606 (2000). ArticleCASPubMed Google Scholar
King, D. P. & Takahashi, J. S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci.23, 713–742 (2000). ArticleCASPubMed Google Scholar
Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature343, 536–540 (1990). ArticleCASPubMed Google Scholar
Kyriacou, C. P., Oldroyd, M., Wood, J., Sharp, M. & Hill, M. Clock mutations alter developmental timing in Drosophila. Heredity64, 395–401 (1990). ArticlePubMed Google Scholar
Clayton, J. D., Kyriacou, C. P. & Reppert, S. M. Keeping time with the human genome. Nature409, 829–831 (2001). ArticleCASPubMed Google Scholar
Abrahante, J. E., Miller, E. A. & Rougvie, A. E. Identification of heterochronic mutants in Caenorhabditis elegans: temporal misexpression of a collagen::green fluorescent protein fusion gene. Genetics149, 1335–1351 (1998). CASPubMedPubMed Central Google Scholar
Antebi, A., Culotti, J. G. & Hedgecock, E. M. daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development125, 1191–1205 (1998). CASPubMed Google Scholar
Antebi, A., Yeh, W. H., Tait, D., Hedgecock, E. M. & Riddle, D. L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev.14, 1512–1527 (2000). CASPubMedPubMed Central Google Scholar
Rougvie, A. E. & Ambros, V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in C. elegans. Development121, 2491–2500 (1995). CASPubMed Google Scholar
Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell5, 659–669 (2000).The demonstration that LIN-41 is probably an RNA-binding protein that might directly regulatelin-29translation.let-7-binding sites in the 3′ UTR are shown to be required for downregulation oflin-41during late post-embryonic development. ArticleCASPubMed Google Scholar
Bettinger, J. C., Lee, K. & Rougvie, A. E. Stage-specific accumulation of the terminal differentiation factor LIN-29 during C. elegans development. Development122, 2517–2527 (1996). CASPubMed Google Scholar
Chan, E. K., Hamel, J. C., Buyon, J. P. & Tan, E. M. Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J. Clin. Invest.87, 68–76 (1991). ArticleCASPubMedPubMed Central Google Scholar
Riddle, D. L., Swanson, M. M. & Albert, P. S. Interacting genes in nematode dauer larva formation. Nature290, 668–671 (1981). ArticleCASPubMed Google Scholar
Thomas, J. H. Chemosensory regulation of development in C. elegans. Bioessays15, 791–797 (1993). ArticleCASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001).This paper provides a link between RNA interference and the heterochronic gene pathway by showing that production of siRNAs and stRNAs use shared components. ArticleCASPubMed Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleCASPubMed Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let–7 small temporal RNA. Science293, 834–838 (2001). ArticleCASPubMed Google Scholar
Parrish, S., Fleenor, J., Xu, S., Mello, C. & Fire, A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell6, 1077–1087 (2000). ArticleCASPubMed Google Scholar
Bettinger, J. C., Euling, S. & Rougvie, A. E. The terminal differentiation factor LIN-29 is required for proper vulval morphogenesis and egg laying in Caenorhabditis elegans. Development124, 4333–4342 (1997). CASPubMed Google Scholar
Newman, A. P., Inoue, T., Wang, M. & Sternberg, P. W. The Caenorhabditis elegans heterochronic gene lin-29 coordinates the vulval–uterine–epidermal connections. Curr. Biol.10, 1479–1488 (2000). ArticleCASPubMed Google Scholar
Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian Ecdysone receptor and Ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol.210, 358–372 (2000). ArticleCASPubMed Google Scholar
Hodin, J. & Riddiford, L. M. The Ecdysone receptor and Ultraspiracle regulate the timing and progression of ovarian morphogenesis during Drosophila metamorphosis. Dev. Genes Evol.208, 304–317 (1998). ArticleCASPubMed Google Scholar
Koch, P. B., Lorenz, U., Brakefield, P. M. & ffrench-Constant, R. H. Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Dev. Genes Evol.210, 536–544 (2000). ArticleCASPubMed Google Scholar
Koch, P. B. Color pattern specific melanin synthesis is controlled by ecdysteroids via dopadecarboxylase in wings of Precis coenia. Eur. J. Entomol.92, 161–167 (1995). CAS Google Scholar
Huhtaniemi, I. The Parkes lecture. Mutations of gonadotrophin and gonadotrophin receptor genes: what do they teach us about reproductive physiology? J. Reprod. Fertil.119, 173–186 (2000). ArticleCASPubMed Google Scholar
Weiss, J. et al. Hypogonadism caused by a single amino acid substitution in the β-subunit of luteinizing hormone. N. Engl. J. Med.326, 179–183 (1992). ArticleCASPubMed Google Scholar
Gould, S. J. in Evolution and development (ed. Bonner, J. T.) (Springer, New York, 1982). Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCASPubMed Google Scholar
Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol.18, 896–898 (2000). ArticleCAS Google Scholar
Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol.2, 70–75 (2000). ArticleCASPubMed Google Scholar
Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet.2, 110–119 (2001). ArticleCASPubMed Google Scholar
Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA95, 15502–15507 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science286, 950–952 (1999). ArticleCASPubMed Google Scholar
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000). ArticleCASPubMed Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000). ArticleCASPubMed Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). ArticleCASPubMed Google Scholar
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). ArticleCASPubMed Google Scholar
Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science287, 2494–2497 (2000). ArticleCASPubMed Google Scholar
Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference in C. elegans. RNA (in the press).
Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA97, 11650–11654 (2000). ArticleCASPubMedPubMed Central Google Scholar