The INK4a/ARF network in tumour suppression (original) (raw)
Weinberg, R. A. The retinoblastoma gene and cell cycle control. Cell81, 323–330 (1995). ArticleCAS Google Scholar
Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev.12, 2245–2262 (1998). ArticleCAS Google Scholar
Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticleCAS Google Scholar
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). ArticleCAS Google Scholar
Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from diverging signals. Genes Dev.12, 2973–2983 (1998). ArticleCAS Google Scholar
Sionov, R. V. & Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene18, 6145–6157 (1999). ArticleCAS Google Scholar
Bates, S. & Vousden, K. H. Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci.55, 28–37 (1999). ArticleCAS Google Scholar
Juven-Gershon, T. & Oren, M. Mdm2: the ups and downs. Mol. Med.5, 71–83 (1999). ArticleCAS Google Scholar
Zhang, Y. & Xiong, Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ.12, 175–186 (2001). CASPubMed Google Scholar
Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell. Biol.1, 20–26 (1999). ArticleCAS Google Scholar
Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J.18, 22–27 (1999). ArticleCAS Google Scholar
Llanos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell Biol.3, 445–452 (2001). ArticleCAS Google Scholar
Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83, 993–1000 (1995). ArticleCAS Google Scholar
Kamb, A. et al. A cell cycle regulator involved in genesis of many tumor types. Science264, 436–440 (1994). ArticleCAS Google Scholar
Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochem. Biophys. Acta Rev. Cancer1378, F115–F177 (1998). ArticleCAS Google Scholar
Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ.9, 585–593 (1998). CASPubMed Google Scholar
Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev.14, 2393–2409 (2000). ArticleCAS Google Scholar
Roussel, M. F. The INK4 family of cell cycle inhibitors in cancer. Oncogene18, 5311–5317 (1999). ArticleCAS Google Scholar
Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16_INK4a_-mediated growth suppression. Mol. Cell. Biol.16, 1047–1057 (1996). ArticleCAS Google Scholar
DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA94, 7245–7250 (1997). ArticleCAS Google Scholar
Muller H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev.15, 267–285 (2001). ArticleCAS Google Scholar
Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev.14, 690–703 (2000).Disruption of mouseE2f3, but notE2f1, reduces transcription of E2f-responsive genes and retards entry into S phase. CASPubMedPubMed Central Google Scholar
Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev.15, 386–391 (2001). ArticleCAS Google Scholar
Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature407, 642–645 (2000). ArticleCAS Google Scholar
Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature407, 645–648 (2000). ArticleCAS Google Scholar
Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends lifespan of Rb1+/− mice. Nature Genet.18, 360–364 (1998). ArticleCAS Google Scholar
Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and cell division. Mol. Cell2, 283–292 (1998). ArticleCAS Google Scholar
Tsai, K. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell2, 293–304 (1998). ArticleCAS Google Scholar
Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene18, 7873–7882 (1999). ArticleCAS Google Scholar
Lukas, J. et al. Rb-dependent cell cycle inhibition by p16CDKN2A tumor suppressor. Nature375, 503–506 (1995). ArticleCAS Google Scholar
Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumour-derived p16 alleles encoding proteins defective in cell cycle inhibition. Nature375, 506–510 (1995). ArticleCAS Google Scholar
Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16Ink4a requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA92, 6289–6293 (1995). ArticleCAS Google Scholar
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCAS Google Scholar
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of Cdkn2a (p16INK4a) confers susceptibility to metastatic melanoma in mice. Nature413, 83–86 (2001). ArticleCAS Google Scholar
Sharpless, N. E. et al. Loss of p16INK4a with retention of p19ARF predisposes to tumourigenesis in mice. Nature413, 86–91 (2001).Specific disruption ofInk4aby point mutation (Ref.35) or by deletion of exon 1 (Ref.36), each with retention ofArf, enables definition of the role of p16Ink4ain the mouse. Although many features initially attributed to p16Ink4ainstead reflectArffunction,Ink4adoes function as a tumour-suppressor gene in the mouse. ArticleCAS Google Scholar
Latres, E. et al. Limited overlapping roles of p15INK4b and p18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J.19, 3496–3506 (2000). ArticleCAS Google Scholar
Herman, J. G., Jen, J., Merlo, A. & Baylin, S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4b. Cancer Res.56, 722–727 (1996). CASPubMed Google Scholar
Zindy, F. et al. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18Ink4c and p19Ink4d. Mol. Cell. Biol.21, 3244–3255 (2001). ArticleCAS Google Scholar
Zindy, F. et al. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc. Natl Acad. Sci. USA96, 13462–13467 (1999). ArticleCAS Google Scholar
Franklin, D. S., Godfrey, V. L., O'Brien, D. A., Deng, C. & Xiong, Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell. Biol.20, 6147–6158 (2000). ArticleCAS Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). ArticleCAS Google Scholar
Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCAS Google Scholar
Zhang, S., Ramsay, E. S. & Mock, B. A. Cdkn2a, the cyclin-dependent kinase inhibitor gene encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. Proc. Natl Acad. Sci. USA95, 2429–2434 (1998). ArticleCAS Google Scholar
Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev.13, 2658–2669 (1999). ArticleCAS Google Scholar
Jacobs, J. J. L. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCAS Google Scholar
Schmitt, C. A., McCurrach, M. E., De Stanchina, E. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev.13, 2670–2677 (1999). ArticleCAS Google Scholar
Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4a and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol.2, 148–155 (2000). ArticleCAS Google Scholar
Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev.11, 2822–2834 (1997). ArticleCAS Google Scholar
Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock. Cell102, 407–410 (2000). ArticleCAS Google Scholar
Wright, W. E. & Shay, J. W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev.11, 98–103 (2001). ArticleCAS Google Scholar
Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev.14, 3037–3050 (2000). ArticleCAS Google Scholar
Dannenberg, J.-H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma protein gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev.14, 3051–3064 (2000). ArticleCAS Google Scholar
Peeper, D. S., Dannenberg, J.-H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol.3, 198–203 (2001).References53and54show that whereas MEFs lacking Rb undergo senescence in culture, those lacking several Rb-family members seem to be immortal. Intriguingly, cells lacking Rb, p107 and p130 are resistant to growth arrest by p19Arf. ArticleCAS Google Scholar
Randle, D. H., Zindy, F., Sherr, C. J. & Roussel, M. F. Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages. Proc Natl Acad Sci USA, 98, 9654–9659 (2001).Like MEFs, mouse bone-marrow-derived pre-B cells that lackArfare immortal, whereas bone-marrow-derived macrophages must also silence theInk4agene to become established as continuously growing cell lines. ArticleCAS Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998). ArticleCAS Google Scholar
Brenner, A. J., Stampfer, M. R. & Aldaz, C. M. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene17, 199–205 (1998). ArticleCAS Google Scholar
Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev.15, 398–403 (2001).Growing primary human keratinocytes and mammary epithelial cells over feeder layers in defined medium can prevent induction of p16Ink4aand enable their immortalization by introducing the telomerase catalytic subunit. ArticleCAS Google Scholar
Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev.12, 2424–2433 (1998). ArticleCAS Google Scholar
De Stanchina, E. et al. E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev.12, 2434–2442 (1998). ArticleCAS Google Scholar
Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumor suppressor p53 to ras. Nature395, 125–126 (1998). ArticleCAS Google Scholar
Radfar, A., Unnikrishnan, I., Lee, H.-W., DePinho, R. A. & Rosenberg, N. p19Arf induces p53-dependent apoptosis during Abelson virus-mediated pre-B cell transformation. Proc. Natl Acad. Sci. USA95, 13194–13199 (1998). ArticleCAS Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCAS Google Scholar
Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell103, 321–330 (2000).AlthoughRastriggersArfinduction and thereby antagonizes Mdm2, Ras-dependent signalling through an Arf-independent pathway can lead to Mdm2 induction. In the absence ofArf, the latter pathway should dominate, making cells resistant to p53 induction following DNA damage. ArticleCAS Google Scholar
Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature395, 124–125 (1998). ArticleCAS Google Scholar
Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell8, 105–113 (2001). ArticleCAS Google Scholar
Khan, S. H., Moritsugu, J. & Wahl, G. M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc. Natl Acad. Sci. USA97, 3266–3271 (2000).DNA damage activates p53 through bothArf-independent andArf-dependent signalling pathways, soArfloss affects the durability of the DNA-damage response. ArticleCAS Google Scholar
Kastan, M. B. & Lim, D. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol.1, 179–186 (2000). ArticleCAS Google Scholar
Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role of p53 activation by DNA damage. Genes Dev.15, 1067–1077 (2001). ArticleCAS Google Scholar
Lin, W.-C., Lin, F.-T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage mediated by ATM-dependent phosphorylation. Genes Dev.15, 1833–1844 (2001).The Atm kinase phosphorylates E2f1, enhancing its activity. This indicates a novel mechanism by which ATM might induce p53. CASPubMedPubMed Central Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). ArticleCAS Google Scholar
Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev.13, 2207–2217 (1999). ArticleCAS Google Scholar
Jacobs, J. J. L. et al. Senescence bypass screen identified TBX2, which represses cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet.26, 291–299 (2000). ArticleCAS Google Scholar
Pantoja, C. & Serrano, M. Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene18, 4974–4982 (1999). ArticleCAS Google Scholar
Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA95, 8292–8297 (1998). ArticleCAS Google Scholar
Stott, F. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J.17, 5001–5014 (1998). ArticleCAS Google Scholar
Weber, J. D. et al. p53-independent functions of the p19ARF tumor suppressor. Genes Dev.14, 2358–2365 (2000).Mice lackingArf, Mdm2andp53show a broader spectrum of tumours than those lackingMdm2andp53. Introduction of p19Arfinto primary MEFs that lackArf, Mdm2andp53induces G1 arrest, albeit slowly. Arf must interact with proteins other than Mdm2. ArticleCAS Google Scholar