Chromosome segregation and cancer: cutting through the mystery (original) (raw)
Paweletz, N. Walther Flemming: pioneer of mitosis research. Nature Rev. Mol. Cell Biol.2, 72–75 (2001). ArticleCAS Google Scholar
Jackman, M. R. & Pines, J. N. Cyclins and the G2/M transition. Cancer Surv.29, 47–73 (1997). CASPubMed Google Scholar
Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell102, 279–291 (2000). ArticleCASPubMed Google Scholar
Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol.11, 49–54 (2001). ArticleCASPubMed Google Scholar
Nigg, E. A. Polo-like kinases: positive regulators of cell division from start to finish. Curr. Opin. Cell Biol.10, 776–783 (1998). ArticleCASPubMed Google Scholar
Sato, N. et al. Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet. Cytogenet.126, 13–19 (2001). ArticleCASPubMed Google Scholar
Saunders, W. S. et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc. Natl Acad. Sci. USA97, 303–308 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science253, 49–53 (1991). ArticleCASPubMed Google Scholar
Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li–Fraumeni syndrome. Science286, 2528–2531 (1999). ArticleCASPubMed Google Scholar
Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature392, 300–303 (1998).First reported evidence for a defect in the mitotic spindle checkpoint pathway in CIN colorectal cancers. ArticleCASPubMed Google Scholar
Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science271, 1744–1747 (1996). ArticleCASPubMed Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet.20, 189–193 (1998). ArticleCASPubMed Google Scholar
Heaney, A. P. et al. Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet355, 716–719 (2000). ArticleCASPubMed Google Scholar
Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J.17, 3052–3065 (1998).Provides evidence for a causal relationship between aurora-A overexpression and tumorigenesis. ArticleCASPubMedPubMed Central Google Scholar
Boveri, T. Zur Frage der Enstehung Maligner Tumoren (Gustav Fischer Verlag, Jena, 1914).Landmark paper that first postulated a link between chromosome missegregation and the origins of cancer. Google Scholar
Nowell, P. & Hungerford, D. Chromosomes of normal and leukemic human leukocytes. J. Natl Cancer Inst.25, 85 (1960). CASPubMed Google Scholar
Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N. & Baltimore, D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science233, 212–214 (1986). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). ArticleCASPubMed Google Scholar
Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science258, 818–821 (1992). ArticleCASPubMed Google Scholar
Speicher, M. R., Gwyn Ballard, S. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet.12, 368–375 (1996). ArticleCASPubMed Google Scholar
Schrock, E. et al. Multicolor spectral karyotyping of human chromosomes. Science273, 494–497 (1996). ArticleCASPubMed Google Scholar
Press, M. F. et al. HER2/NEU gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J. Clin. Oncol.15, 2894–2904 (1997). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med.344, 1196–1206 (2001). ArticleCASPubMedPubMed Central Google Scholar
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991).The author argues that a sustained increase in the rate of genetic alterations per cell division is a prerequisite for the development of cancer within the lifetime of an individual. CASPubMed Google Scholar
Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell75, 1215–1225 (1993). ArticleCASPubMed Google Scholar
Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell75, 1227–1236 (1993). ArticleCASPubMed Google Scholar
Umar, A. et al. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J. Biol. Chem.269, 14367–14370 (1994). ArticleCASPubMed Google Scholar
Shibata, D., Peinado, M. A., Ionov, Y., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet.6, 273–281 (1994). ArticleCASPubMed Google Scholar
Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell75, 1027–1038 (1993). ArticleCASPubMed Google Scholar
Marra, G. & Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl Cancer Inst.87, 1114–1125 (1995). ArticleCASPubMed Google Scholar
Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science260, 816–819 (1993). ArticleCASPubMed Google Scholar
Eshleman, J. R. et al. Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene17, 719–725 (1998). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature386, 623–627 (1997). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Miyoshi, Y., Iwao, K., Takahashi, Y., Egawa, C. & Noguchi, S. Acceleration of chromosomal instability by loss of BRCA1 expression and p53 abnormality in sporadic breast cancers. Cancer Lett.159, 211–216 (2000). ArticleCASPubMed Google Scholar
Beheshti, B. et al. Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase fish analysis. Neoplasia3, 62–69 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene18, 4295–4300 (1999). ArticleCASPubMed Google Scholar
Eshleman, J. R. et al. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene10, 33–37 (1995). CASPubMed Google Scholar
Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res.61, 818–822 (2001).Provides an important clue that CIN might arise very soon after colorectal tumour initiation, leading to profound allelic losses even in very small adenomatous polyps. CASPubMed Google Scholar
Duesberg, P., Rausch, C., Rasnick, D. & Hehlmann, R. Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc. Natl Acad. Sci. USA95, 13692–13697 (1998). ArticleCASPubMedPubMed Central Google Scholar
Duesberg, P. et al. How aneuploidy may cause cancer and genetic instability. Anticancer Res.19, 4887–4906 (1999). CASPubMed Google Scholar
Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature365, 274–276 (1993). ArticleCASPubMed Google Scholar
Peltomaki, P. & de la Chapelle, A. Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv. Cancer Res.71, 93–119 (1997). ArticleCASPubMed Google Scholar
Spencer, F., Gerring, S. L., Connelly, C. & Hieter, P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics124, 237–249 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kinzler, K. W. & Vogelstein, B. The Genetic Basis of Human Cancer (McGraw–Hill, Toronto, 1998). Google Scholar
Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol.3, 429–432 (2001). ArticleCASPubMed Google Scholar
Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol.3, 433–438 (2001). ArticleCASPubMed Google Scholar
Abdel-Rahman, W. M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA98, 2538–2543 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gemma, A. et al. Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer29, 213–218 (2000). ArticleCASPubMed Google Scholar
Imai, Y., Shiratori, Y., Kato, N., Inoue, T. & Omata, M. Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J. Cancer Res.90, 837–840 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ohshima, K. et al. Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett.158, 141–150 (2000). ArticleCASPubMed Google Scholar
Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature409, 355–359 (2001).Demonstrates that inactivation of a single copy of theMAD2gene in either human colon cancer cells or in the intact mouse leads to elevated rates of chromosome loss and to late-onset tumours of the mouse lung. ArticleCASPubMed Google Scholar
Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science246, 629–634 (1989). ArticleCASPubMed Google Scholar
Canman, C. E. Replication checkpoint: preventing mitotic catastrophe. Curr. Biol.11, R121–R124 (2001). ArticleCASPubMed Google Scholar
Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science282, 1497–1501 (1998). ArticleCASPubMed Google Scholar
Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest.104, 263–269 (1999). ArticleCASPubMedPubMed Central Google Scholar
Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell66, 519–531 (1991). ArticleCASPubMed Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66, 507–517 (1991). ArticleCASPubMed Google Scholar
Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell106, 83–93 (2001). ArticleCASPubMed Google Scholar
Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell102, 817–826 (2000). ArticleCASPubMed Google Scholar
Shah, J. V. & Cleveland, D. W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell103, 997–1000 (2000). ArticleCASPubMed Google Scholar
Page, A. M. & Hieter, P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem.68, 583–609 (1999). ArticleCASPubMed Google Scholar
King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science274, 1652–1659 (1996). ArticleCASPubMed Google Scholar
Yanagida, M. Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin. Genes Cells5, 1–8 (2000). ArticleCASPubMed Google Scholar
Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science288, 1379–1385 (2000). ArticleCASPubMed Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev.12, 1871–1883 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tang, Z., Bharadwaj, R., Li, B. & Yu, H. MAD2-independent inhibition of APC CDC20 by the mitotic checkpoint protein BUBR1. Dev. Cell1, 227–237 (2001). ArticleCASPubMed Google Scholar
Sudakin, V., Chen, G. K. T. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol.154, 925–936 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, A., Guacci, V. & Koshland, D. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell Biol.133, 85–97 (1996). ArticleCASPubMed Google Scholar
Yamamoto, A., Guacci, V. & Koshland, D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol.133, 99–110 (1996). ArticleCASPubMed Google Scholar
Funabiki, H., Kumada, K. & Yanagida, M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J.15, 6617–6628 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell93, 1067–1076 (1998). ArticleCASPubMed Google Scholar
Kumada, K. et al. Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol.8, 633–641 (1998). ArticleCASPubMed Google Scholar
Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science285, 418–422 (1999).Demonstration that human securin is identical to the pituitary tumour-transforming gene (PTTG), a candidate oncogene that is overexpressed in several cancer types. ArticleCASPubMed Google Scholar
Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell103, 375–386 (2000).By combining the power of yeast genetics with biochemistry, the authors show that separin is a cohesin-specific protease that is distantly related to the caspase family of cysteine endopeptidases. ArticleCASPubMed Google Scholar
Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin complexes from chromosome arms in prophase and from centromeres in anaphase. Cell103, 399–410 (2000). ArticleCASPubMed Google Scholar
Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell91, 35–45 (1997). ArticleCASPubMed Google Scholar
Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell91, 47–57 (1997). ArticleCASPubMedPubMed Central Google Scholar
Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol.8, 1095–1101 (1998). ArticleCASPubMed Google Scholar
Stratmann, R. & Lehner, C. F. Separation of sister chromatids in mitosis requires the Drosophila pimples product, a protein degraded after the metaphase/anaphase transition. Cell84, 25–35 (1996). ArticleCASPubMed Google Scholar
Leismann, O., Herzig, A., Heidmann, S. & Lehner, C. F. Degradation of Drosophila PIM regulates sister chromatid separation during mitosis. Genes Dev.14, 2192–2205 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jallepalli, P. V. et al. Securin is required for chromosomal stability in human cells. Cell105, 445–457 (2001). ArticleCASPubMed Google Scholar
Jensen, S., Segal, M., Clarke, D. J. & Reed, S. I. A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: evidence that proper spindle association of Esp1 is regulated by Pds1. J. Cell Biol.152, 27–40 (2001). ArticleCASPubMedPubMed Central Google Scholar
Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A. & Nasmyth, K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell105, 459–472 (2001). ArticleCASPubMed Google Scholar
Arnaud, L., Pines, J. & Nigg, E. A. GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma107, 424–429 (1998). ArticleCASPubMed Google Scholar
Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep.2, 609–614 (2001). ArticleCASPubMedPubMed Central Google Scholar
Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell89, 727–735 (1997).Shows that the mouse Bub1 kinase is involved in the timing of anaphase onset during normal mitosis. ArticleCASPubMed Google Scholar
Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell93, 81–91 (1998). ArticleCASPubMed Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246–248 (1996). ArticleCASPubMed Google Scholar
Wang, X. et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells. Carcinogenesis21, 2293–2297 (2000). ArticleCASPubMed Google Scholar
Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, BRCA2. Mol. Cell4, 1–10 (1999). ArticleCASPubMed Google Scholar
McKeon, F. Killing the umpire: cooperative defects in mitotic checkpoint and BRCA2 genes on the road to transformation. Breast Cancer Res.1, 8–10 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dominguez, A. et al. hPTTG, a human homologue of rat Pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene17, 2187–2193 (1998). ArticleCASPubMed Google Scholar
Saez, C. et al. hPTTG is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene18, 5473–5476 (1999). ArticleCASPubMed Google Scholar
Pei, L. & Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol.11, 433–441 (1997). ArticleCASPubMed Google Scholar
Zur, A. & Brandeis, M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J.20, 792–801 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dobles, M., Liberal, V., Scott, M. L., Benezra, R. & Sorger, P. K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell101, 635–645 (2000). ArticleCASPubMed Google Scholar
Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev.14, 2277–2282 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mei, J., Huang, X. & Zhang, P. Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr. Biol.11, 1197–1201 (2001). ArticleCASPubMed Google Scholar
Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science287, 1969–1973 (2000). ArticleCASPubMed Google Scholar
Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol.9, M57–M60 (1999). ArticleCASPubMed Google Scholar
Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. J. in The Genetic Basis of Human Cancer (eds Kinzler, K. W. & Vogelstein, B.) 245–274 (McGraw–Hill, New York, 1998). Google Scholar
Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H. & Leadon, S. A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science281, 1009–1012 (1998). ArticleCASPubMed Google Scholar
Sharan, S. K. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature386, 804–810 (1997). ArticleCASPubMed Google Scholar
Boyd, M. R. & Paull, K. D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res.34, 91–109 (1995). ArticleCAS Google Scholar
Torrance, C., Agrawal, V., Kinzler, K. W. & Vogelstein, B. Use of isogenic human cancer cells for highthroughput screening and drug discovery. Nature Biotechnol.19, 940–945 (2001).Description of a novel strategy for drug screening based on isogenic human cancer cell lines. ArticleCAS Google Scholar