Structural integration in hypoxia-inducible factors (original) (raw)
Semenza, G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol.15, 551–578 (1999) ArticleCASPubMed Google Scholar
Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92, 5510–5514 (1995) ArticleCASPubMedADSPubMed Central Google Scholar
Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem.271, 17771–17778 (1996) ArticleCASPubMed Google Scholar
Peng, J., Zhang, L., Drysdale, L. & Fong, G. H. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc. Natl Acad. Sci. USA97, 8386–8391 (2000) ArticleCASPubMedADSPubMed Central Google Scholar
Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH-PAS proteins in cancer. Nature Rev. Cancer13, 827–841 (2013) ArticleCAS Google Scholar
Kewley, R. J., Whitelaw, M. L. & Chapman-Smith, A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol.36, 189–204 (2004) ArticleCASPubMed Google Scholar
McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol.72, 625–645 (2010) ArticleCASPubMed Google Scholar
Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature Rev. Cancer12, 9–22 (2012) ArticleCAS Google Scholar
Heikkilä, M., Pasanen, A., Kivirikko, K. I. & Myllyharju, J. Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cell. Mol. Life Sci.68, 3885–3901 (2011) ArticlePubMedCAS Google Scholar
Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nature Rev. Cancer2, 38–47 (2002) ArticleCAS Google Scholar
Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340 (2001) ArticleCASPubMedADS Google Scholar
Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science295, 858–861 (2002) ArticleCASPubMedADS Google Scholar
Dames, S. A., Martinez-Yamout, M., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response. Proc. Natl Acad. Sci. USA99, 5271–5276 (2002) ArticleCASPubMedADSPubMed Central Google Scholar
Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest.123, 3664–3671 (2013) ArticleCASPubMedPubMed Central Google Scholar
Semenza, G. L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol.76, 39–56 (2014) ArticleCASPubMed Google Scholar
Girgis, C. M., Cheng, K., Scott, C. H. & Gunton, J. E. Novel links between HIFs, type 2 diabetes, and metabolic syndrome. Trends Endocrinol. Metab.23, 372–380 (2012) ArticleCASPubMed Google Scholar
Eltzschig, H. K., Bratton, D. L. & Colgan, S. P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Rev. Drug Discov.13, 852–869 (2014) ArticleCAS Google Scholar
Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene29, 625–634 (2010) ArticleCASPubMed Google Scholar
Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci.33, 207–214 (2012) ArticleCASPubMedPubMed Central Google Scholar
Hewitson, K. S. & Schofield, C. J. The HIF pathway as a therapeutic target. Drug Discov. Today9, 704–711 (2004) ArticleCASPubMed Google Scholar
Wenger, R. H., Stiehl, D. P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE2005, re12 (2005) PubMed Google Scholar
Murray, I. A., Patterson, A. D. & Perdew, G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature Rev. Cancer14, 801–814 (2014) ArticleCAS Google Scholar
Erbel, P. J., Card, P. B., Karakuzu, O., Bruick, R. K. & Gardner, K. H. Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proc. Natl Acad. Sci. USA100, 15504–15509 (2003) ArticleCASPubMedADSPubMed Central Google Scholar
Scheuermann, T. H. et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA106, 450–455 (2009) ArticleCASPubMedADSPubMed Central Google Scholar
Guo, Y., Scheuermann, T. H., Partch, C. L., Tomchick, D. R. & Gardner, K. H. Coiled-coil coactivators play a structural role mediating interactions in hypoxia inducible factor heterodimerization. J. Biol. Chem.290, 7707–7721 (2015) ArticleCASPubMedPubMed Central Google Scholar
Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci.124, 1–22 (2011) ArticleCASPubMedPubMed Central Google Scholar
Henry, J. T. & Crosson, S. Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu. Rev. Microbiol.65, 261–286 (2011) ArticleCASPubMedPubMed Central Google Scholar
Cardoso, R. et al. Identification of Cys255 in HIF-1α as a novel site for development of covalent inhibitors of HIF-1α/ARNT PasB domain protein-protein interaction. Protein Sci.21, 1885–1896 (2012) ArticleCASPubMedPubMed Central Google Scholar
Rogers, J. L. et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J. Med. Chem.56, 1739–1747 (2013) ArticleCASPubMedPubMed Central Google Scholar
Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nature Chem. Biol.9, 271–276 (2013) ArticleCAS Google Scholar
Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc.135, 10418–10425 (2013) ArticleCASPubMedPubMed Central Google Scholar
Guo, Y. et al. Regulating the ARNT/TACC3 axis: multiple approaches to manipulating protein/protein interactions with small molecules. ACS Chem. Biol.8, 626–635 (2013) ArticleCASPubMed Google Scholar
Key, J., Scheuermann, T. H., Anderson, P. C., Daggett, V. & Gardner, K. H. Principles of ligand binding within a completely buried cavity in HIF2alpha PAS-B. J. Am. Chem. Soc.131, 17647–17654 (2009) ArticleCASPubMedPubMed Central Google Scholar
Wang, Z., Wu, Y., Li, L. & Su, X. D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res.23, 213–224 (2013) ArticlePubMedCAS Google Scholar
Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science260, 1317–1320 (1993) ArticleCASPubMedADS Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999) ArticleCASADSPubMed Google Scholar
Li, L. et al. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Mol. Cell. Biol.27, 5381–5392 (2007) ArticleCASPubMedPubMed Central Google Scholar
Kaelin, W. G., Jr Molecular basis of the VHL hereditary cancer syndrome. Nature Rev. Cancer2, 673–682 (2002) ArticleCAS Google Scholar
Shen, C. et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov.1, 222–235 (2011) ArticleCASPubMedPubMed Central Google Scholar
Kroeger, N. et al. Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer119, 1547–1554 (2013) ArticleCASPubMed Google Scholar
Ollerenshaw, M., Page, T., Hammonds, J. & Demaine, A. Polymorphisms in the hypoxia inducible factor-1α gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet. Cytogenet.153, 122–126 (2004) ArticleCASPubMed Google Scholar
Morris, M. R. et al. Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res.29, 4337–4343 (2009) CASPubMed Google Scholar
Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res.43, D805–D811 (2015) ArticleCASPubMed Google Scholar
To, K. K., Sedelnikova, O. A., Samons, M., Bonner, W. M. & Huang, L. E. The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2α in NBS1 repression. EMBO J.25, 4784–4794 (2006) ArticleCASPubMedPubMed Central Google Scholar
Kalousi, A. et al. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J. Cell Sci.123, 2976–2986 (2010) ArticleCASPubMed Google Scholar
Wu, D., Potluri, N., Kim, Y. & Rastinejad, F. Structure and dimerization properties of the aryl hydrocarbon receptor PAS-A domain. Mol. Cell. Biol.33, 4346–4356 (2013) ArticleCASPubMedPubMed Central Google Scholar
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D62, 859–866 (2006) ArticlePubMedCAS Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) ArticleCASPubMedPubMed Central Google Scholar
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ1, 213–220 (2014) ArticleCASPubMedPubMed Central Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010) CASPubMed Google Scholar
Dundas, J. et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res.34, W116–W118 (2006) ArticleCASPubMedPubMed Central Google Scholar
Abaan, O. D. et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res.73, 4372–4382 (2013) ArticleCASPubMedPubMed Central Google Scholar
Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genet.44, 694–698 (2012) ArticleCASPubMed Google Scholar
Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genet.45, 860–867 (2013) ArticleCASPubMed Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007) ArticleCASPubMed Google Scholar
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res.42, W320–W324 (2014) ArticleCASPubMedPubMed Central Google Scholar