- Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).
Article CAS PubMed Google Scholar
- Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, 183–188 (1999).
Article Google Scholar
- Brumell, J. H. & Grinstein, S. Role of lipid-mediated signal transduction in bacterial internalization. Cell. Microbiol. 5, 287–297 (2003).
Article CAS PubMed Google Scholar
- Botelho, R. J., Scott, C. C. & Grinstein, S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr. Top. Microbiol. Immunol. 282, 1–30 (2004).
CAS PubMed Google Scholar
- Payrastre, B. et al. Phosphoinositides: key players in cell signalling, in time and space. Cell. Signal. 13, 377–387 (2001).
Article CAS PubMed Google Scholar
- Greenberg, S., el Khoury, J., di Virgilio, F., Kaplan, E. M. & Silverstein, S. C. Ca2+-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J. Cell Biol. 113, 757–767 (1991).
Article CAS PubMed Google Scholar
- Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).
Article CAS PubMed Google Scholar
- Defacque, H. et al. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190–1202 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Lemmon, M. A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).
Article CAS PubMed Google Scholar
- Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Coppolino, M. G. et al. Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J. Biol. Chem. 277, 43849–43857 (2002).
Article CAS PubMed Google Scholar
- Cox, D. & Greenberg, S. Phagocytic signaling strategies: Fcã-receptor-mediated phagocytosis as a model system. Semin. Immunol. 13, 339–345 (2001).
Article CAS PubMed Google Scholar
- Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Marshall, J. G. et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemal subdomain during Fc γ receptor-mediated phagocytosis. J. Cell Biol. 153, 1369–1380 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Cox, D., Tseng, C. C., Bjekic, G. & Greenberg, S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (1999).
Article CAS PubMed Google Scholar
- Hilpela, P., Vartiainen, M. K. & Lappalainen, P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3 . Curr. Top. Microbiol. Immunol. 282, 117–163 (2004).
CAS PubMed Google Scholar
- Cox, D., Dale, B. M., Kashiwada, M., Helgason, C. D. & Greenberg, S. A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fc γ receptors and complement receptor 3 (αMβ2; CD11b/CD18). J. Exp. Med. 193, 61–71 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Cao, X. et al. The inositol 3-phosphatase PTEN negatively regulates Fc γ receptor signaling, but supports Toll-like receptor 4 signaling in murine peritoneal macrophages. J. Immunol. 172, 4851–4857 (2004).
Article CAS PubMed Google Scholar
- Ellson, C. D. et al. Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11, 1631–1635 (2001).
Article CAS PubMed Google Scholar
- Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).
Article CAS PubMed Google Scholar
- Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).
Article CAS PubMed Google Scholar
- Zhan, Y., Virbasius, J. V., Song, X., Pomerleau, D. P. & Zhou, GW. The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J. Biol. Chem. 8, 4512–4518 (2002).
Article Google Scholar
- Worby, C. A. & Dixon, J. E. Sorting out the cellular functions of sorting nexins. Nature Rev. Mol. Cell Biol. 3, 919–931 (2002).
Article CAS Google Scholar
- Cozier, G. E. et al. The phox homology (PX) domain-dependent, 3-phosphoinositidemediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736 (2002).
Article CAS PubMed Google Scholar
- Henry, R. M., Hoppe, A. D., Joshi, N. & Swanson, J. A. The uniformity of phagosome maturation in macrophages. J. Cell Biol. 164, 185–189 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Putzker, M., Sauer, H. & Sobe, D. Plague and other human infections caused by Yersinia species. Clin. Lab. 47, 453–466 (2001).
CAS PubMed Google Scholar
- Isberg, R. R. & Leong, J. M. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).
Article CAS PubMed Google Scholar
- Alrutz, M. A. et al. Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1–Arp 2/3 pathway that bypasses N-WASP function. Mol. Microbiol. 42, 689–703 (2001).
Article CAS PubMed Google Scholar
- Wong, K. W. & Isberg, R. R. Arf6 and phosphoinositol-4-phosphate-5-kinase activities permit bypass of the Rac1 requirement for β1 integrin-mediated bacterial uptake. J. Exp. Med. 198, 603–614 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Derrien, V. et al. A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J. Cell Sci. 115, 2867–2879 (2002).
CAS PubMed Google Scholar
- Niedergang, F., Colucci-Guyon, E., Dubois, T., Raposo, G. & Chavrier, P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J. Cell Biol. 161, 1143–1150 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Dussurget, O., Pizarro-Cerdá, J. & Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610 (2004).
Article CAS PubMed Google Scholar
- Mengaud, J., Ohayon, H., Gounon, P., Mege, R. -M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).
Article CAS PubMed Google Scholar
- Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).
Article CAS PubMed Google Scholar
- Ireton, K. et al. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274, 780–782 (1996).
Article CAS PubMed Google Scholar
- Ireton, K., Payrastre, B. & Cossart, P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274, 17025–17032 (1999).
Article CAS PubMed Google Scholar
- Maulik, G. et al. Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J. Cell. Mol. Med. 6, 539–553 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Banerjee, M. et al. GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation. Mol. Microbiol. 52, 257–2571 (2004).
Article CAS PubMed Google Scholar
- Bierne, H. et al. A role for cofilin and LIM kinase in _Listeria_-induced phagocytosis. J. Cell Biol. 155, 101–112 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Seveau, S., Bierne, H., Giroux, S., Prevost, M. C. & Cossart, P. Role of lipid rafts in E cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166, 743–753 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Bierne, H. et al. The invasion protein InIB from Listeria monocytogenes activates PLC-ã1 downstream from PI 3-kinase. Cell. Microbiol. 2, 465–476 (2000).
Article CAS PubMed Google Scholar
- Alvarez-Dominguez, C., Barbieri, A. M., Beron, W., Wandinger-Ness, A. & Stahl, P. D. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome- endosome fusion. J. Biol. Chem. 271, 13834–13843 (1996).
Article CAS PubMed Google Scholar
- Mansell, A., Khelef, N., Cossart, P. & O'Neill, L. A. Internalin B activates nuclear factor- kappa B via Ras, phosphoinositide 3-kinase, and Akt. J. Biol. Chem. 276, 43597–43603 2001).
Article CAS PubMed Google Scholar
- Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Min, G. et al. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317, 697–706 (2002).
Article CAS PubMed Google Scholar
- Duncan, M. J., Li, G., Shin, J. S., Carson, J. L. & Abraham, S. N. Bacterial penetration of bladder epithelium through lipid rafts. J. Biol. Chem. 279, 18944–18951 (2004).
Article CAS PubMed Google Scholar
- Philpott, D. J., Edgeworth, J. D. & Sansonetti, P. J. The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 575–586 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals andplants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).
CAS PubMed PubMed Central Google Scholar
- Tran Van Nhieu, G., Caron, E., Hall, A. & Sansonetti, P. J. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Kuwae, A. et al. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J. Biol. Chem. 276, 32230–32239 (2001).
Article CAS PubMed Google Scholar
- Niebuhr, K. et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Rameh, L. E., Tolias, K. F., Duckworth, B. C. & Cantley, L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).
Article CAS PubMed Google Scholar
- Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell 100, 221–228 (2000).
Article CAS PubMed Google Scholar
- House, D., Bishop, A., Parry, C., Dougan, G. & Wain, J. Typhoid fever: pathogenesis and disease. Curr. Opin. Infect. Dis. 14, 573–578 (2001).
Article CAS PubMed Google Scholar
- Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).
Article CAS PubMed Google Scholar
- Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).
Article CAS PubMed Google Scholar
- Pattni, K., Jepson, M., Stenmark, H. & Banting, G. A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr. Biol. 11, 1636–1642 (2001).
Article CAS PubMed Google Scholar
- Scott, C. C., Cuellar-Mata, P., Matsuo, T., Davidson, H. W. & Grinstein, S. Role of 3-phosphoinositides in the maturation of _Salmonella_-containing vacuoles within host cells. J. Biol. Chem. 277, 12770–12776 (2002).
Article CAS PubMed Google Scholar
- Chua, J. & Deretic, V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J. Biol. Chem. 279, 36982–36989 (2004).
Article CAS PubMed Google Scholar
- Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).
Article CAS PubMed Google Scholar
- Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of _Salmonella typhimurium_-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 33–49 (1999).
Article CAS PubMed Google Scholar
- Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275, 37718–37724 (2000).
Article CAS PubMed Google Scholar
- Marcus, S. L., Wenk, M. R., Steele-Mortimer, O. & Finlay, B. B. A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett. 494, 201–207 (2001).
Article CAS PubMed Google Scholar
- Clarke, S. C., Haigh, R. D., Freestone, P. P. & Williams, P. H. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin. Microbiol. Rev. 16, 365–378 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Rosenshine, I. et al. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Celli, J., Olivier, M. & Finlay, B. B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16, 463–496 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).
Article CAS PubMed Google Scholar
- Clemens, D. L. & Horwitz, M. A. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181, 257–270 (1995).
Article CAS PubMed Google Scholar
- Vergne, I., Chua, J. & Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin–PI3K hVPS34 cascade. J. Exp. Med. 198, 653–659 (2003).
Article PubMed PubMed Central Google Scholar
- Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Vieira, O. V. et al. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol. Cell. Biol. 24, 4593–4604 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Vergne, I. et al. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell 15, 751–760 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Anes, E. et al. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nature Cell Biol. 5, 793–802 (2003).
Article CAS PubMed Google Scholar
- Du, G. et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. 162, 305–315 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).
Article CAS PubMed Google Scholar
- Clarke, J. H. Lipid signalling: picking out the PIPs. Curr. Biol. 13, R815–R817 (2003).
Article CAS PubMed Google Scholar