Role of membrane traffic in the generation of epithelial cell asymmetry (original) (raw)
Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol.9, 833–845 (2008). CASPubMedPubMed Central Google Scholar
Cao, X., Surma, M. A. & Simons, K. Polarized sorting and trafficking in epithelial cells. Cell Res.22, 793–805 (2012). CASPubMedPubMed Central Google Scholar
Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). CASPubMedPubMed Central Google Scholar
Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol.8, 963–970 (2006). CASPubMed Google Scholar
Jacob, R. & Naim, H. Y. Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol.11, 1444–1450 (2001). CASPubMed Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol.5, 126–136 (2003). CASPubMed Google Scholar
Farr, G. A., Hull, M., Mellman, I. & Caplan, M. J. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. J. Cell Biol.186, 269–282 (2009). CASPubMedPubMed Central Google Scholar
Fukuda, M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci.65, 2801–2813 (2008). CASPubMed Google Scholar
Tveit, H., Akslen, L. K., Fagereng, G. L., Tranulis, M. A. & Prydz, K. A secretory Golgi bypass route to the apical surface domain of epithelial MDCK cells. Traffic10, 1685–1695 (2009). CASPubMed Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Bio.167, 531–543 (2004). CAS Google Scholar
Cresawn, K. O. et al. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J.26, 3737–3748 (2007). CASPubMedPubMed Central Google Scholar
Cramm-Behrens, C. I., Dienst, M. & Jacob, R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic9, 2206–2220 (2008). CASPubMed Google Scholar
Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA104, 1564–1569 (2007). CASPubMedPubMed Central Google Scholar
Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol.10, 583–596 (2009). CASPubMed Google Scholar
Khandelwal, P., Ruiz, W. G. & Apodaca, G. Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. EMBO J.29, 1961–1975 (2010). CASPubMedPubMed Central Google Scholar
Parton, R. G., Prydz, K., Bomsel, M., Simons, K. & Griffiths, G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol.109, 3259–3272 (1989). CASPubMed Google Scholar
Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA91, 5061–5065 (1994). CASPubMedPubMed Central Google Scholar
Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo . Nature485, 465–470 (2012). CASPubMed Google Scholar
Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol.145, 123–139 (1999). CASPubMedPubMed Central Google Scholar
Wang, E. et al. Apical and basolateral pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic1, 480–493 (2000). CASPubMed Google Scholar
Babbey, C. M. et al. Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell17, 3156–3175 (2006). CASPubMedPubMed Central Google Scholar
Henry, L. & Sheff, D. R. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol. Biol. Cell19, 2059–2068 (2008). CASPubMedPubMed Central Google Scholar
Leung, S.-M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized MDCK cells. Mol. Biol. Cell11, 2131–2150 (2000). CASPubMedPubMed Central Google Scholar
Tzaban, S. et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J. Cell Biol.185, 673–684 (2009). CASPubMedPubMed Central Google Scholar
Thompson, A. et al. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol. Biol. Cell18, 2687–2697 (2007). CASPubMedPubMed Central Google Scholar
Jerdeva, G. V. et al. Comparison of FcRn- and pIgR-mediated transport in MDCK cells by fluorescence confocal microscopy. Traffic11, 1205–1220 (2010). CASPubMedPubMed Central Google Scholar
Ait Slimane, T. & Hoekstra, D. Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett.529, 54–59 (2002). CASPubMed Google Scholar
Gonzalez, A. & Rodriguez-Boulan, E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett.583, 3784–3795 (2009). CASPubMedPubMed Central Google Scholar
Fölsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell99, 189–198 (1999). PubMed Google Scholar
Simmen, T., Höning, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol.4, 154–159 (2002). CASPubMed Google Scholar
Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the trans-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA99, 6755–6760 (2002). CASPubMedPubMed Central Google Scholar
Ohno, H. et al. μ1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett.449, 215–220 (1999). CASPubMed Google Scholar
Takahashi, D. et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology141, 621–632 (2011). CASPubMed Google Scholar
Schreiner, R. et al. The absence of a clathrin adapter confers unique polarity essential to proximal tubule function. Kidney Int.78, 382–388 (2010). CASPubMedPubMed Central Google Scholar
Fölsch, H., Pypaert, M., Schu, P. & Mellman, I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J. Cell Biol.152, 595–606 (2001). PubMedPubMed Central Google Scholar
Sugimoto, H. et al. Differential recognition of tyrosine-based basolateral signals by AP-1B subunit μ1B in polarized epithelial cells. Mol. Biol. Cell13, 2374–2382 (2002). CASPubMedPubMed Central Google Scholar
Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature456, 976–979 (2008). CASPubMedPubMed Central Google Scholar
Carvajal-Gonzalez, J. M. et al. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl Acad. Sci. USA109, 3820–3825 (2012). CASPubMedPubMed Central Google Scholar
Xiong, X. et al. An association between type Iγ PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization. Mol. Biol. Cell23, 87–98 (2012). CASPubMedPubMed Central Google Scholar
Sun, Y., Ling, K., Wagoner, M. P. & Anderson, R. A. Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol.178, 297–308 (2007). CASPubMedPubMed Central Google Scholar
Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell18, 3978–3992 (2007). CASPubMedPubMed Central Google Scholar
Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). CASPubMed Google Scholar
Folsch, H., Pypaert, M., Maday, S., Pelletier, L. & Mellman, I. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J. Cell Biol.163, 351–362 (2003). PubMedPubMed Central Google Scholar
Miranda, K. C. et al. A dileucine motif targets E-cadherin to the basolateral cell surface in Madin-Darby canine kidney and LLC-PK1 epithelial cells. J. Biol. Chem.276, 22565–22572 (2001). CASPubMed Google Scholar
Kang, R. S. & Folsch, H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J. Cell Biol.193, 51–60 (2011). CASPubMedPubMed Central Google Scholar
Mishra, S. K., Watkins, S. C. & Traub, L. M. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc. Natl Acad. Sci. USA99, 16099–16104 (2002). CASPubMedPubMed Central Google Scholar
Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol.163, 339–350 (2003). CASPubMedPubMed Central Google Scholar
Fields, I. C., King, S. M., Shteyn, E., Kang, R. S. & Folsch, H. Phosphatidylinositol 3,4,5-trisphosphate localization in recycling endosomes is necessary for AP-1B-dependent sorting in polarized epithelial cells. Mol. Biol. Cell21, 95–105 (2010). CASPubMedPubMed Central Google Scholar
Shteyn, E., Pigati, L. & Folsch, H. Arf6 regulates AP-1B-dependent sorting in polarized epithelial cells. J. Cell Biol.194, 873–887 (2011). CASPubMedPubMed Central Google Scholar
Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol.163, 339–350 (2003). CASPubMedPubMed Central Google Scholar
Au, J. S., Puri, C., Ihrke, G., Kendrick-Jones, J. & Buss, F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J. Cell Biol.177, 103–114 (2007). CASPubMedPubMed Central Google Scholar
Fields, I. C. et al. v-SNARE cellubrevin is required for basolateral sorting of AP-1B-dependent cargo in polarized epithelial cells. J. Cell Biol.177, 477–488 (2007). CASPubMedPubMed Central Google Scholar
Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature448, 366–369 (2007). CASPubMed Google Scholar
Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol.12, 1035–1045 (2010). CASPubMedPubMed Central Google Scholar
Feng, S. et al. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J. Biol. Chem.287, 15602–15609 (2012). CASPubMedPubMed Central Google Scholar
Kim, J., Krishnaswami, S. R. & Gleeson, J. G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet.17, 3796–3805 (2008). CASPubMedPubMed Central Google Scholar
Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA107, 6346–6351 (2010). CASPubMedPubMed Central Google Scholar
Omori, Y. et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol.10, 437–444 (2008). CASPubMed Google Scholar
Deora, A. A. et al. The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol. Biol. Cell15, 4148–4165 (2004). CASPubMedPubMed Central Google Scholar
Li, C. et al. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-α containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol. Biol. Cell18, 3081–3093 (2007). PubMedPubMed Central Google Scholar
Kizhatil, K. et al. Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J. Biol. Chem.282, 26552–26561 (2007). CASPubMed Google Scholar
Sorrosal, G., Perez, L., Herranz, H. & Milan, M. Scarface, a secreted serine protease-like protein, regulates polarized localization of laminin A at the basement membrane of the Drosophila embryo. EMBO Rep.11, 373–379 (2010). CASPubMedPubMed Central Google Scholar
Denef, N., Chen, Y., Weeks, S. D., Barcelo, G. & Schupbach, T. Crag regulates epithelial architecture and polarized deposition of basement membrane proteins in Drosophila . Dev. Cell14, 354–364 (2008). CASPubMedPubMed Central Google Scholar
Weisz, O. A. & Rodriguez-Boulan, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci.122, 4253–4266 (2009). CASPubMedPubMed Central Google Scholar
Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J.16, 5501–5508 (1997). CASPubMedPubMed Central Google Scholar
Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol.9, 291–294 (1999). CASPubMed Google Scholar
Boscher, C., Dennis, J. W. & Nabi, I. R. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol.23, 383–392 (2011). CASPubMed Google Scholar
Delacour, D. et al. Requirement for galectin-3 in apical protein sorting. Curr. Biol.16, 408–414 (2006). CASPubMed Google Scholar
Delacour, D. et al. Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo . J. Cell Sci.121, 458–465 (2008). CASPubMed Google Scholar
Mattila, P. E. et al. Multiple biosynthetic trafficking routes for apically secreted proteins in MDCK cells. Traffic13, 433–442 (2012). CASPubMed Google Scholar
Delacour, D. et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol.169, 491–501 (2005). CASPubMedPubMed Central Google Scholar
Stechly, L. et al. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic10, 438–450 (2009). CASPubMed Google Scholar
Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical-basal polarity in Madin–Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA107, 17633–17638 (2010). CASPubMedPubMed Central Google Scholar
Delacour, D. et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic8, 379–388 (2007). CASPubMed Google Scholar
Astanina, K., Delebinski, C. I., Delacour, D. & Jacob, R. Annexin XIIIb guides raft-dependent and -independent apical traffic in MDCK cells. Eur. J. Cell Biol.89, 799–806 (2010). CASPubMed Google Scholar
Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem.279, 3680–3684 (2004). CASPubMed Google Scholar
Magal, L. G. et al. Clustering and lateral concentration of raft lipids by the MAL protein. Mol. Biol. Cell20, 3751–3762 (2009). CASPubMedPubMed Central Google Scholar
Zhou, G. et al. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells. Mol. Biol. Cell23, 1354–1366 (2012). CASPubMedPubMed Central Google Scholar
de Marco, M. C. et al. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J. Cell Biol.159, 37–44 (2002). CASPubMedPubMed Central Google Scholar
Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol.11, 688–699 (2010). CASPubMed Google Scholar
Klemm, R. W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol.185, 601–612 (2009). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol.13, 1189–1201 (2011). CASPubMedPubMed Central Google Scholar
Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev.91, 119–149 (2011). CASPubMed Google Scholar
Nokes, R. L., Fields, I. C., Collins, R. N. & Folsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J. Cell Biol.182, 845–853 (2008). CASPubMedPubMed Central Google Scholar
Galvez-Santisteban, M. et al. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nat. Cell Biol.14, 838–849 (2012). CASPubMedPubMed Central Google Scholar
Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem.273, 15734–15741 (1998). CASPubMed Google Scholar
Jaulin, F. & Kreitzer, G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J. Cell Biol.190, 443–460 (2010). CASPubMedPubMed Central Google Scholar
Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell13, 511–522 (2007). CASPubMedPubMed Central Google Scholar
Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol.155, 77–88 (2001). CASPubMedPubMed Central Google Scholar
Yeh, T. Y., Peretti, D., Chuang, J. Z., Rodriguez-Boulan, E. & Sung, C. H. Regulatory dissociation of Tctex-1 light chain from dynein complex is essential for the apical delivery of rhodopsin. Traffic7, 1495–1502 (2006). CASPubMed Google Scholar
Ameen, N. & Apodaca, G. Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic8, 998–1006 (2007). CASPubMed Google Scholar
Eichler, T. W., Kogel, T., Bukoreshtliev, N. V. & Gerdes, H. H. The role of myosin Va in secretory granule trafficking and exocytosis. Biochem. Soc. Trans.34, 671–674 (2006). CASPubMed Google Scholar
Roland, J. T. et al. Rab GTPase–Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA108, 2789–2794 (2011). CASPubMedPubMed Central Google Scholar
Bond, L. M., Brandstaetter, H., Sellers, J. R., Kendrick-Jones, J. & Buss, F. Myosin motor proteins are involved in the final stages of the secretory pathways. Biochem. Soc. Trans.39, 1115–1119 (2011). CASPubMedPubMed Central Google Scholar
Born, M., Pahner, I., Ahnert-Hilger, G. & Jons, T. The maintenance of the permeability barrier of bladder facet cells requires a continuous fusion of discoid vesicles with the apical plasma membrane. Eur. J. Cell Biol.82, 343–350 (2003). CASPubMed Google Scholar
Nielsen, S. et al. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J. Clin. Invest.96, 1834–1844 (1995). CASPubMedPubMed Central Google Scholar
Procino, G. et al. AQP2 exocytosis in the renal collecting duct — involvement of SNARE isoforms and the regulatory role of Munc18b. J. Cell Sci.121, 2097–2106 (2008). CASPubMed Google Scholar
Karvar, S., Yao, X., Crothers, J. M. Jr, Liu, Y. & Forte, J. G. Localization and function of soluble _N_-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J. Biol. Chem.277, 50030–50035 (2002). CASPubMed Google Scholar
Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell7, 2007–2018 (1996). CASPubMedPubMed Central Google Scholar
Reales, E., Sharma, N., Low, S. H., Folsch, H. & Weimbs, T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE6, e21181 (2011). CASPubMedPubMed Central Google Scholar
Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol.173, 937–948 (2006). CASPubMedPubMed Central Google Scholar
Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol.9, 887–901 (2008). CASPubMedPubMed Central Google Scholar
Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol.28, 655–685 (2012). CASPubMed Google Scholar
Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl Acad. Sci. USA101, 13792–13797 (2004). CASPubMedPubMed Central Google Scholar
Nechiporuk, T., Fernandez, T. E. & Vasioukhin, V. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5−/− mice. Dev. Cell13, 338–350 (2007). CASPubMedPubMed Central Google Scholar
Laprise, P. et al. Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins. Nature459, 1141–1145 (2009). CASPubMed Google Scholar
Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol.5, 301–308 (2003). CASPubMed Google Scholar
Laprise, P. & Tepass, U. Novel insights into epithelial polarity proteins in Drosophila . Trends Cell Biol.21, 401–408 (2011). CASPubMed Google Scholar
Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol.20, 445–452 (2010). CASPubMedPubMed Central Google Scholar
Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat. Cell Biol.14, 666–676 (2012). CASPubMed Google Scholar
Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell20, 4652–4663 (2009). CASPubMedPubMed Central Google Scholar
Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol.12, 1035–1045 (2010). CASPubMedPubMed Central Google Scholar
Ferrari, A., Veligodskiy, A., Berge, U., Lucas, M. S. & Kroschewski, R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J. Cell Sci.121, 3649–3663 (2008). CASPubMed Google Scholar
Xu, K. et al. Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev. Cell20, 526–539 (2011). CASPubMedPubMed Central Google Scholar
Herwig, L. et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol.21, 1942–1948 (2011). CASPubMed Google Scholar
Schluter, M. A. & Margolis, B. Apical lumen formation in renal epithelia. J. Am. Soc. Nephrol.20, 1444–1452 (2009). PubMed Google Scholar
Willenborg, C. et al. Interaction between FIP5 and SNX18 regulates epithelial lumen formation. J. Cell Biol.195, 71–86 (2011). CASPubMedPubMed Central Google Scholar
Jin, Y. et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev. Cell21, 1156–1170 (2011). CASPubMedPubMed Central Google Scholar
Horikoshi, Y. et al. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci.122, 1595–1606 (2009). CASPubMed Google Scholar
Zhang, H. et al. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development139, 2071–2083 (2012). PubMedPubMed Central Google Scholar
Shafaq-Zadah, M., Brocard, L., Solari, F. & Michaux, G. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development139, 2061–2070 (2012). CASPubMed Google Scholar
Nelson, W. J. Remodeling epithelial cell organization: transitions between front–rear and apical–basal polarity. Cold Spring Harb. Perspect. Biol.1, a000513 (2009). PubMedPubMed Central Google Scholar
Wang, Q., Chen, X. W. & Margolis, B. PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol. Biol. Cell18, 874–885 (2007). PubMedPubMed Central Google Scholar
Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol.178, 323–335 (2007). CASPubMedPubMed Central Google Scholar
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell128, 547–560 (2007). CASPubMedPubMed Central Google Scholar
Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell16, 1744–1755 (2005). CASPubMedPubMed Central Google Scholar
Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci.117, 559–570 (2004). CASPubMed Google Scholar
Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol.197, 697–709 (2012). CASPubMedPubMed Central Google Scholar
ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell16, 551–562 (2009). CASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). CASPubMed Google Scholar
O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat. Cell Biol.3, 831–838 (2001). CASPubMed Google Scholar
O'Brien, L. E. et al. Morphological and biochemical analysis of Rac1 in three-dimensional epithelial cell cultures. Methods Enzymol.406, 676–691 (2006). CASPubMed Google Scholar
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods30, 256–268 (2003). CASPubMed Google Scholar
Zegers, M. M., O'Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro . Trends Cell Biol.13, 169–176 (2003). CASPubMed Google Scholar
Yu, W. et al. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol. Biol. Cell14, 748–763 (2003). CASPubMedPubMed Central Google Scholar
Apodaca, G. Opening ahead: early steps in lumen formation revealed. Nat. Cell Biol.12, 1026–1028 (2010). CASPubMed Google Scholar