Willert, K. & Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev.8, 95–102 (1998). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science340, 1190–1194 (2013). ArticleCASPubMed Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). ArticleCASPubMed Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10, 55–63 (2004). ArticleCASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol.13, 838–845 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lyashenko, N. et al. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat. Cell Biol.13, 753–761 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yi, F., Pereira, L. & Merrill, B.J. Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells26, 1951–1960 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ten Berge, D. et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol.13, 1070–1075 (2011). ArticleCASPubMed Google Scholar
Shy, B. R. et al. Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt–β-catenin signaling. Cell Rep.4, 1–9 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yi, F. et al. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat. Cell Biol.13, 762–70 (2011). ArticleCASPubMedPubMed Central Google Scholar
Merrill, B. J. et al. Tcf3: a transcriptional regulator of axis induction in the early embryo. Development131, 263–274 (2004). ArticleCASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). ArticleCASPubMed Google Scholar
Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell127, 171–183 (2006). ArticleCASPubMed Google Scholar
Wu, C.I. et al. Function of Wnt–β-catenin in counteracting Tcf3 repression through the Tcf3-β-catenin interaction. Development139, 2118–2129 (2012). ArticleCASPubMedPubMed Central Google Scholar
Van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCASPubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science275, 1784–1787 (1997). ArticleCASPubMed Google Scholar
Angus-Hill, M. L., Elbert, K. M., Hidalgo, J. & Capecchi, M. R. T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc. Natl Acad. Sci. USA108, 4914–4919 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tang, W. et al. A genome-wide RNAi screen for Wnt–β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc. Natl Acad. Sci. USA105, 9697–9702 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, J. A., Wu, C. I. & Merrill, B. J. Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification. Development140, 1665–1675 (2013). ArticleCASPubMedPubMed Central Google Scholar
Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell147, 577–589 (2011). ArticleCASPubMedPubMed Central Google Scholar
Verzi, M. P. et al. TCF4 and CDX2, major transcription factors for intestinal function, converge on the same cis-regulatory regions. Proc. Natl Acad. Sci. USA107, 15157–15162 (2010). ArticleCASPubMedPubMed Central Google Scholar
Boj, S. F. et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell151, 1595–1607 (2012). ArticleCASPubMed Google Scholar
Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature395, 604–608 (1998). ArticleCASPubMed Google Scholar
Brantjes, H., Roose, J., van De Wetering, M. & Clevers, H. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res.29, 1410–1419 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chen, G. & Courey, A. J. Groucho/TLE family proteins and transcriptional repression. Gene249, 1–16 (2000). ArticleCASPubMed Google Scholar
Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108, 837–847 (2002). ArticleCASPubMed Google Scholar
Lo, M. C., Gay, F., Odom, R., Shi, Y. & Lin, R. Phosphorylation by the β-catenin/MAPK complex promotes 14-3-3-mediated nuclear export of TCF/POP-1 in signal-responsive cells in C. elegans . Cell117, 95–106 (2004). ArticleCASPubMed Google Scholar
Hikasa, H. et al. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev. Cell19, 521–532 (2010). ArticleCASPubMedPubMed Central Google Scholar
Park, M. H. et al. Phosphorylation of β-catenin at serine 663 regulates its transcriptional activity. Biochem. Biophys. Res. Commun.419, 543–549 (2012). ArticleCASPubMed Google Scholar
Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol.10, 207–217 (2009). ArticleCASPubMedPubMed Central Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar
Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol.118, 216–225 (2002). ArticleCASPubMed Google Scholar
Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. Bioessays27, 247–261 (2005). ArticleCASPubMed Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). ArticleCASPubMed Google Scholar
Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol.22, 1184–1193 (2002). ArticleCASPubMedPubMed Central Google Scholar
Posthaus, H. et al. β-Catenin is not required for proliferation and differentiation of epidermal mouse keratinocytes. J. Cell Sci.115, 4587–4595 (2002). ArticleCASPubMed Google Scholar
Chen, T. et al. An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature485, 104–108 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.9, 700–713 (1995). ArticleCASPubMed Google Scholar
Lien, W. H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell9, 219–232 (2011). ArticleCASPubMedPubMed Central Google Scholar
Beronja, S., Livshits, G., Williams, S. & Fuchs, E. Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nat. Med.16, 821–827 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature447, 316–320 (2007). ArticleCASPubMed Google Scholar
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol.1, 4 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell3, 33–43 (2008). ArticleCASPubMedPubMed Central Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol.10, R25 (2009). ArticlePubMedPubMed Central Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28, 511–555 (2010). ArticleCASPubMedPubMed Central Google Scholar