Spinning molecular immunology into successful immunotherapy (original) (raw)
Haywood, G. R. & McKhann, C. F. Antigenic specificities on murine sarcoma cells. Reciprocal relationship between normal transplantation antigens (H-2) and tumor-specific immunogenicity. J. Exp. Med.133, 1171–1187 (1971). CASPubMedPubMed Central Google Scholar
Hui, K., Grosveld, F. & Festenstein, H. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature311, 750–752 (1984). CASPubMed Google Scholar
Travers, P. J., Arklie, J. L., Trowsdale, J., Patillo, R. A. & Bodmer, W. F. Lack of expression of HLA-ABC antigens in choriocarcinoma and other human tumor cell lines. Natl Cancer Inst. Monogr.60, 175–180 (1982). CASPubMed Google Scholar
Kaklamanis, L. et al. Loss of HLA class-I alleles, heavy chains and β2-microglobulin in colorectal cancer. Int. J. Cancer51, 379–385 (1992). CASPubMed Google Scholar
Restifo, N. P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med.177, 265–272 (1993). CASPubMed Google Scholar
Torre, A. G. et al. A highly immunogenic tumor transfected with a murine transforming growth factor type β1 cDNA escapes immune surveillance. Proc. Natl Acad. Sci. USA87, 1486–1490 (1990). Google Scholar
Bogen, B. Peripheral T-cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur. J. Immunol.26, 2671–2679 (1996). CASPubMed Google Scholar
Speiser, D. E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med.186, 645–653 (1997). CASPubMedPubMed Central Google Scholar
Staveley-O'Carroll, K. et al. Induction of antigen-specific T-cell anergy: an early event in the course of tumor progression. Proc. Natl Acad. Sci. USA95, 1178–1183 (1998). CASPubMedPubMed Central Google Scholar
Wick, M. et al. Antigenic cancer cells grow progressively in immune hosts without evidence for T-cell exhaustion or systemic anergy. J. Exp. Med.186, 229–238 (1997). CASPubMedPubMed Central Google Scholar
Hung, K. et al. The central role of CD4+ T cells in the anti-tumor immune response. J. Exp. Med.188, 2357–2368 (1998). CASPubMedPubMed Central Google Scholar
Qin, Z. et al. B cells inhibit induction of T-cell-dependent tumor immunity. Nature Med.4, 627–630 (1998). CASPubMed Google Scholar
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63, 1129–1136 (1990). CASPubMed Google Scholar
Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J.8, 4099–4105 (1989). CASPubMedPubMed Central Google Scholar
Galloway, D. A. & Jenison, S. A. Characterization of the humoral immune response to genital papillomaviruses. Mol. Biol. Med.7, 59–72 (1990). CASPubMed Google Scholar
Howley, P. M. in Fundamental Virology (eds Fields, B. N. & Knipe, D. M.) 743–763 (Raven, New York, 1991). Google Scholar
Beasley, R. P., Hwang, L. Y., Lin, C. C. & Chien, C. S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet2, 1129–1133 (1981). CASPubMed Google Scholar
Brechot, C. What is the role of hepatitis B virus in the appearance of hepatocellular carcinomas in patients with alcoholic cirrhosis? Gastroenterol. Clin. Biol.6, 727–730 (1982). CASPubMed Google Scholar
Szmuness, W. Hepatocellular carcinoma and the hepatitis B virus: evidence for a casual association. Prog. Med. Virol.24, 40–69 (1978). CASPubMed Google Scholar
Shafritz, D. A., Shouval, D., Sherman, H. I., Hadziyannis, S. J. & Kew, M. C. Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsies and post-mortem tissue specimens. N. Engl. J. Med.305, 1067–1073 (1981). CASPubMed Google Scholar
zur Hausen, H., Schulte-Holthausen, H. & Klein, G. EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas of the nasopharynx. Nature228, 1056–1059 (1970). CASPubMed Google Scholar
Weiss, L. M., Movahed, L. A., Warnke, R. A. & Sklar, J. Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin's disease. N. Engl. J. Med.320, 502–506 (1989). CASPubMed Google Scholar
Wu, T. C. et al. Detection of EBV gene expression in Reed–Sternberg cells of Hodgkin's disease. Int. J. Cancer46, 801–804 (1990). CASPubMed Google Scholar
Steinman, R. M. The dendritic-cell system and its role in immunogenicity. Annu. Rev. Immunol.9, 271–296 (1991). CASPubMed Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCASPubMed Google Scholar
Inaba, K. et al. Identification of proliferating dendritic-cell precursors in mouse blood. J. Exp. Med.175, 1157–1167 (1992). CASPubMed Google Scholar
Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature360, 258–261 (1992). CASPubMed Google Scholar
Kiertscher, S. M. & Roth, M. D. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J. Leukocyte Biol.59, 208–218 (1996). CASPubMed Google Scholar
Romani, N. R. D. et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods196, 137–151 (1996). CASPubMed Google Scholar
Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3-ligand-treated mice: multiple dendritic-cell subpopulations identified. J. Exp. Med.184, 1953–1962 (1996). CASPubMed Google Scholar
Akira, S. T. K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). CAS Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor α. J. Exp. Med.179, 1109–1118 (1994). CASPubMed Google Scholar
Caux, C. et al. Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med.180, 1263–1272 (1994). CASPubMed Google Scholar
Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T–T help via APC activation. J. Exp. Med.184, 747–752 (1996). CASPubMed Google Scholar
Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature388, 782–787 (1997). CASPubMed Google Scholar
Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature388, 787–792 (1997). CASPubMed Google Scholar
Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90, 3539–3543 (1993).Comprehensive comparison of the relative efficacies of whole-cell tumour vaccines engineered to secrete a panel of different cytokines. This study identified GM-CSF-transduced tumour vaccines as uniquely generating potent systemic antitumour immunity and provided anin vivocorrelate to the studies that showed the role of GM-CSF in the induction of DC differentiation. CASPubMedPubMed Central Google Scholar
Pardoll, D. M. & Jaffee, E. M. in Principles and Practice of Biologic Therapy of Cancer (Silverchair, Charlottesville, 1999). Google Scholar
Chiodoni, C. et al. Dendritic cells infiltrating tumors cotransduced with granulocyte–macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T-lymphocyte response. J. Exp. Med.190, 125–133 (1999).Demonstration of the enhanced effectiveness of engineered tumour-cell vaccines that secrete a combination of DC mitogen (GM-CSF) and activation (CD40L) factors in locally activating DCs and producing systemic antitumour immunity. CASPubMedPubMed Central Google Scholar
Tao, M. H. & Levy, R. Idiotype/granulocyte–macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature362, 755–758 (1993). CASPubMed Google Scholar
Small, E. J. et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol.18, 3894–3903 (2000). CASPubMed Google Scholar
Tendler, D. S. et al. Intersection of interferon and hypoxia signal-transduction pathways in nitric-oxide-induced tumor apoptosis. Cancer Res.61, 3682–3688 (2001). CASPubMed Google Scholar
Simons, J. W. et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer. Cancer Res.57, 1537–1546 (1997). CASPubMedPubMed Central Google Scholar
Soiffer, R. et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA95, 13141–13146 (1998). CASPubMedPubMed Central Google Scholar
Jaffee, E. M. et al. Novel allogeneic granulocyte–macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J. Clin. Oncol.19, 145–156 (2001). CASPubMed Google Scholar
Porgador, A. & Gilboa, E. Bone-marrow-generated dendritic cells pulsed with a class-I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J. Exp. Med.182, 255–260 (1995). CASPubMed Google Scholar
Mayordomo, J. I. et al. Bone-marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med.1, 1297–1302 (1995). CASPubMed Google Scholar
Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor-lysate-pulsed dendritic cells. Nature Med.4, 328–332 (1998). CASPubMed Google Scholar
Hsu, F. J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med.2, 52–58 (1996). CASPubMed Google Scholar
Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M. P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med.183, 317–322 (1996). CASPubMed Google Scholar
Lambert, L. A., Gibson, G. R., Maloney, M. & Barth, R. J. Jr. Equipotent generation of protective antitumor immunity by various methods of dendritic-cell loading with whole cell tumor antigens. J. Immunother.24, 232–236 (2001). CASPubMed Google Scholar
Shimizu, K., Thomas, E. K., Giedlin, M. & Mule, J. J. Enhancement of tumor lysate- and peptide-pulsed dendritic-cell-based vaccines by the addition of foreign helper protein. Cancer Res.61, 2618–2624 (2001). CASPubMed Google Scholar
Song, W. et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model tumor antigen induce protective and therapeutic antitumor immunity. J. Exp. Med.186, 1247–1256 (1997). CASPubMedPubMed Central Google Scholar
Specht, J. M. et al. Dendritic cells retrovirally transduced with a model tumor antigen gene are therapeutically effective against established pulmonary metastases. J. Exp. Med.186, 1213–1221 (1997). CASPubMedPubMed Central Google Scholar
Dyall, J., Latouche, J. B., Schnell, S. & Sadelain, M. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood97, 114–121 (2001). CASPubMed Google Scholar
Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med.184, 465–472 (1996). CASPubMed Google Scholar
Reddy, A., Sapp, M., Feldman, M., Subklewe, M. & Bhardwaj, N. A monocyte-conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood90, 3640–3646 (1997). CASPubMed Google Scholar
Bender, A. S. M., Schuler, G., Steinman, R. M. & Bhardwaj, N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods196, 121–135 (1996). CASPubMed Google Scholar
Klein, C., Bueler, H. & Mulligan, R. C. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. Exp. Med.191, 1699–1708 (2000). CASPubMedPubMed Central Google Scholar
Gong, J., Chen, D., Kashiwaba, M. & Kufe, D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nature Med.3, 558–561 (1997). CASPubMed Google Scholar
Boyle, J. S., Brady, J. L. & Lew, A. M. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature392, 408–411 (1998). CASPubMed Google Scholar
You, Z., Huang, X., Hester, J., Toh, H. C. & Chen, S. Y. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res.61, 3704–3711 (2001). CASPubMed Google Scholar
Mahnke, K. et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol.151, 673–684 (2000). CASPubMedPubMed Central Google Scholar
Srivastava, P. K. Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev. Immunol.2, 185–194 (2002). CAS Google Scholar
Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat-shock protein preparations. Science278, 117–120 (1997). CASPubMed Google Scholar
Udono, H. & Srivastava, P. K. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. J. Immunol.152, 5398–5403 (1994). CASPubMed Google Scholar
Arnold, D., Faath, S., Rammensee, H. & Schild, H. Cross-priming of minor histocompatibity antigen-specific cytotoxic T cells upon immunization with the heat-shock protein gp96. J. Exp. Med.182, 885–889 (1995). CASPubMed Google Scholar
Wang, X. Y., Kazim, L., Repasky, E. A. & Subjeck, J. R. Characterization of heat-shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J. Immunol.166, 490–497 (2001). CASPubMed Google Scholar
Suzue, K., Zhou, X., Eisen, H. N. & Young, R. A. Heat-shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl Acad. Sci. USA94, 13146–13151 (1997). CASPubMedPubMed Central Google Scholar
Castellino, F. et al. Receptor-mediated uptake of antigen/heat-shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med.191, 1957–1964 (2000). CASPubMedPubMed Central Google Scholar
Chen, C. H. et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res.60, 1035–1042 (2000).References65–71indicate the different ways that various heat-shock proteins have been used to enhance tumour vaccine potency. CASPubMed Google Scholar
Suto, R. & Srivastava, P. K. A mechanism for the specific immunogenicity of heat-shock-protein-chaperoned peptides. Science269, 1585–1588 (1995). CASPubMed Google Scholar
Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat-shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity14, 303–313 (2001). CASPubMed Google Scholar
Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med.6, 435–442 (2000).Shows the ability of heat-shock proteins to act as activation signals for antigen-presenting cells. CASPubMed Google Scholar
Kuppner, M. C. et al. The role of heat-shock protein (hsp70) in dendritic-cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur. J. Immunol.31, 1602–1609 (2001). CASPubMed Google Scholar
Boniface, J. J. & Davis, M. M. T-cell recognition of antigen. A process controlled by transient intermolecular interactions. Ann. NY Acad. Sci.766, 62–69 (1995). CASPubMed Google Scholar
Boon, T. O. L. Cancer tumor antigens. Curr. Opin. Immunol.9, 681–683 (1997). CASPubMed Google Scholar
Robbins, P. F. & Kawakami, Y. Human tumor antigens recognized by T cells. Curr. Opin. Immunol.8, 628–636 (1996). CASPubMed Google Scholar
Parkhurst, M. R. et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J. Immunol.157, 2539–2548 (1996). CASPubMed Google Scholar
Dyall, R. et al. Heteroclitic immunization induces tumor immunity. J. Exp. Med.188, 1553–1561 (1998).References79and80show that modification of MHC anchor residues in a tumour peptide antigen can significantly enhance MHC binding without disrupting recognition by T cells specific for the wild-type peptide. Anchor modification is now commonly used to enhance the efficacy of peptide vaccines. CASPubMedPubMed Central Google Scholar
Slansky, J. E. et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity13, 529–538 (2000).Shows that modification of residues in an antigenic peptide that increase TCR affinity can increase the stimulation of significant repertoires of T cells specific for the wild-type peptide. CASPubMed Google Scholar
Wu, T. C. et al. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc. Natl Acad. Sci. USA92, 11671–11675 (1995). CASPubMedPubMed Central Google Scholar
Lin, K. Y. et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res.56, 21–26 (1996). CASPubMed Google Scholar
Ji, H. et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther.10, 2727–2740 (1999). CASPubMed Google Scholar
Hung, C. F. et al. Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J. Immunol.166, 5733–5740 (2001). CASPubMed Google Scholar
Hung, C. F. et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res.61, 3698–3703 (2001). CASPubMed Google Scholar
Livingston, B. D. et al. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine19, 4652–4660 (2001). CASPubMed Google Scholar
Townsend, S. E. & Allison, J. P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science259, 368–370 (1993). CASPubMed Google Scholar
Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell71, 1093–1102 (1992). CASPubMed Google Scholar
Huang, A. Y., Bruce, A. T., Pardoll, D. M. & Levitsky, H. I. Does B7-1 expression confer antigen-presenting cell capacity to tumors in vivo? J. Exp. Med.183, 769–776 (1996). CASPubMed Google Scholar
Kim, J. J. et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nature Biotechnol.15, 641–646 (1997). CAS Google Scholar
Agadjanyan, M. G. et al. CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. J. Immunol.162, 3417–3427 (1999). CASPubMed Google Scholar
Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med.3, 682–685 (1997). CASPubMed Google Scholar
Weinberg, A. D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol.164, 2160–2169 (2000). CASPubMed Google Scholar
Bansal-Pakala, P., Jember, A. G. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med.7, 907–912 (2001). CASPubMed Google Scholar
Atkins, M. B. et al. High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17, 2105–2116 (1999). CASPubMed Google Scholar
Lode, H. N., Xiang, R., Becker, J. C., Gillies, S. D. & Reisfeld, R. A. Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol. Ther.80, 277–292 (1998). CASPubMed Google Scholar
Ahlers, J. D., Dunlop, N., Alling, D. W., Nara, P. L. & Berzofsky, J. A. Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte–macrophage colony-stimulating factor and TNF-α synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J. Immunol.158, 3947–3958 (1997). CASPubMed Google Scholar
Smith, G. L., Murphy, B. R. & Moss, B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl Acad. Sci. USA80, 7155–7159 (1983). CASPubMedPubMed Central Google Scholar
Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA80, 5364–5368 (1983). CASPubMedPubMed Central Google Scholar
Moss, B. Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc. Natl Acad. Sci. USA93, 11341–11348 (1996). CASPubMedPubMed Central Google Scholar
Carroll, M. W. et al. Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine15, 387–394 (1997). CASPubMedPubMed Central Google Scholar
Paoletti, E., Taylor, J., Meignier, B., Meric, C. & Tartaglia, J. Highly attenuated poxvirus vectors: NYVAC, ALVAC and TROVAC. Dev. Biol. Stand.84, 159–163 (1995). CASPubMed Google Scholar
Velders, M. P. et al. Eradication of established tumors by vaccination with venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res.61, 7861–7867 (2001). CASPubMed Google Scholar
Elzey, B. D., Siemens, D. R., Ratliff, T. L. & Lubaroff, D. M. Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (alvac) cytokine gene delivery induces destruction of established prostate tumors. Int. J. Cancer94, 842–849 (2001). CASPubMed Google Scholar
Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W. & Ploegh, H. L. Virus subversion of immunity: a structural perspective. Curr. Opin. Immunol.13, 442–450 (2001). CASPubMed Google Scholar
Irvine, K. R. et al. Enhancing efficacy of recombinant anticancer vaccines with prime–boost regimens that use two different vectors. J. Natl Cancer Inst.89, 1595–1601 (1997). CASPubMed Google Scholar
Ramshaw, I. A. & Ramsay, A. J. The prime–boost strategy: exciting prospects for improved vaccination. Immunol. Today21, 163–165 (2000). CASPubMed Google Scholar
Pan, Z. K., Ikonomidis, G., Lazenby, A., Pardoll, D. M. & Paterson, Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nature Med.1, 471–477 (1995). CASPubMed Google Scholar
Thole, J. E. et al. Live bacterial delivery systems for development of mucosal vaccines. Curr. Opin. Mol. Ther.2, 94–99 (2000). CASPubMed Google Scholar
Killeen, K., Spriggs, D. & Mekalanos, J. Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr. Top. Microbiol. Immunol.236, 237–254 (1999). CASPubMed Google Scholar
Ohara, N. & Yamada, T. Recombinant BCG vaccines. Vaccine19, 4089–4098 (2001). CASPubMed Google Scholar
Shata, M. T., Stevceva, L., Agwale, S., Lewis, G. K. & Hone, D. M. Recent advances with recombinant bacterial vaccine vectors. Mol. Med. Today6, 66–71 (2000). CASPubMed Google Scholar
Sizemore, D. R., Branstrom, A. A. & Sadoff, J. C. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science270, 299–302 (1995). CASPubMed Google Scholar
Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell91, 765–775 (1997). CASPubMed Google Scholar
Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T-cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol.19, 565–594 (2001). CASPubMed Google Scholar
van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-CTLA-4 and GM–CSF producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med.190, 355–366 (1999). CASPubMedPubMed Central Google Scholar
Hurwitz, A. A., Yu, T. F., Leach, D. R. & Allison, J. P. CTLA-4 blockade synergizes with tumor-derived granulocyte–macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl Acad. Sci. USA95, 10067–10071 (1998). CASPubMedPubMed Central Google Scholar
Hurwitz, A. A. et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res.60, 2444–2448 (2000). CASPubMed Google Scholar
Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med.5, 1365–1369 (1999). CASPubMed Google Scholar
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). CASPubMedPubMed Central Google Scholar
Tseng, S.-Y. et al. B7-DC, a new dendritic-cell molecule with unique costimulatory properties for T cells. J. Exp. Med.193, 839–846 (2001). CASPubMedPubMed Central Google Scholar
Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T-cell activation. Nature Immunol.2, 261–268 (2001). CAS Google Scholar
Ibarra-Sanchez, M. J. et al. The T-cell protein tyrosine phosphatase. Semin. Immunol.12, 379–386 (2000). CASPubMed Google Scholar
Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature409, 349–354 (2001). CASPubMed Google Scholar
Greenhalgh, C. J. & Hilton, D. J. Negative regulation of cytokine signaling. J. Leukocyte Biol.70, 348–356 (2001). CASPubMed Google Scholar
Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T-cell receptor. J. Exp. Med.193, 497–507 (2001). CASPubMedPubMed Central Google Scholar
Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature403, 216–220 (2000). CASPubMed Google Scholar
Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature403, 211–216 (2000). CASPubMed Google Scholar
Sun, L. et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity8, 703–711 (1998). CASPubMed Google Scholar
Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA92, 11810–11813 (1995). CASPubMedPubMed Central Google Scholar
Gure, A. O. et al. SSX: a multigene family with several members transcribed in normal testis and human cancer. Int. J. Cancer72, 965–971 (1997). CASPubMed Google Scholar
Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995).A combination of a GM-CSF-transduced melanoma cell vaccine and anti-CTLA4 antibodies are used to show thatin vivoCTLA4 blockade can amplify vaccine potency significantly. As in reference27, anti-melanoma activity correlated with induction of vitiligo. CASPubMed Google Scholar
Fossum, B. et al. A K-ras 13Gly→Asp mutation is recognized by HLA-DQ7 restricted T cells in a patient with colorectal cancer. Modifying effect of DQ7 on established cancers harbouring this mutation? Int. J. Cancer58, 506–511 (1994).Clinical survey of melanoma patients treated with different immunotherapies, showing that virtually all patients who develop therapy-related vitiligo have partial or complete tumour regression. CASPubMed Google Scholar
Fossum, B. et al. p21-ras-peptide-specific T-cell responses in a patient with colorectal cancer. CD4+ and CD8+ T cells recognize a peptide corresponding to a common mutation (13Gly→Asp). Int. J. Cancer56, 40–45 (1994).First application of expression cloning to identify a human tumour antigen. The MAGE family is an important set of shared tumour antigens selectively expressed in tumours and testes but not in other normal adult tissues. CASPubMed Google Scholar
Kwak, L. W., Young, H. A., Pennington, R. W. & Weeks, S. D. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte–macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc. Natl Acad. Sci. USA93, 10972–10977 (1996). CASPubMedPubMed Central Google Scholar
Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a 'self' antigen induces autoimmune vitiligo and tumor-cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA96, 2982–2987 (1999). CASPubMedPubMed Central Google Scholar
Rosenberg, S. A. & White, D. E. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J. Immunother. Emphasis Tumor Immunol.19, 81–84 (1996). CASPubMed Google Scholar
Van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254, 1643–1647 (1991). CASPubMed Google Scholar