Notch signaling controls the generation and differentiation of early T lineage progenitors (original) (raw)
Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol.148, 1604–1612 (1992). CASPubMed Google Scholar
Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med.193, 365–374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Petrie, H.T., Hugo, P., Scollay, R. & Shortman, K. Lineage relationships and developmental kinetics of immature thymocytes: CD3, CD4, and CD8 acquisition in vivo and in vitro. J. Exp. Med.172, 1583–1588 (1990). ArticleCASPubMed Google Scholar
Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol.150, 4244–4252 (1993). CASPubMed Google Scholar
Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol.4, 168–174 (2003). ArticleCASPubMed Google Scholar
Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity20, 735–745 (2004). ArticleCASPubMed Google Scholar
Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage and natural killer, but no B lymphocyte potential. Blood105, 1930–1936 (2004). ArticlePubMed Google Scholar
Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol.5, 953–960 (2004). ArticleCASPubMed Google Scholar
Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCASPubMed Google Scholar
Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol.4, 866–873 (2003). ArticleCASPubMed Google Scholar
Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol.5, 247–253 (2004). ArticleCASPubMed Google Scholar
Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation and function by the Notch pathway. Annu. Rev. Immunol.23, 945–974 (2005). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Wilson, A., MacDonald, H.R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med.194, 1003–1012 (2001). ArticleCASPubMedPubMed Central Google Scholar
Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin−Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity15, 659–669 (2001). ArticleCASPubMed Google Scholar
Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA98, 14541–14546 (2001). ArticleCASPubMedPubMed Central Google Scholar
Adolfsson, J. et al. Identification of flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCASPubMed Google Scholar
Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity17, 463–472 (2002). ArticleCASPubMed Google Scholar
Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med.198, 1495–1506 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity3, 147–161 (1995). ArticleCASPubMed Google Scholar
Weng, A.P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol.23, 655–664 (2003). ArticleCASPubMedPubMed Central Google Scholar
Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood104, 1696–1702 (2004). ArticleCASPubMed Google Scholar
Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity17, 749–756 (2002). ArticleCASPubMed Google Scholar
D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med.198, 293–303 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moore, T.A. & Zlotnik, A. Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J. Immunol.158, 4187–4192 (1997). CASPubMed Google Scholar
McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood95, 3489–3497 (2000). CASPubMed Google Scholar
Deftos, M.L., Huang, E., Ojala, E.W., Forbush, K.A. & Bevan, M.J. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity13, 73–84 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J.19, 3337–3348 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ting, C.N., Olson, M.C., Barton, K.P. & Leiden, J.M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature384, 474–478 (1996). ArticleCASPubMed Google Scholar
Hoflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol.173, 3935–3944 (2004). ArticlePubMed Google Scholar
Rothenberg, E.V. & Taghon, T. Molecular Genetics of T Cell Development. Annu. Rev. Immunol.23, 601–649 (2005). ArticleCASPubMed Google Scholar
Hendriks, R.W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol.29, 1912–1918 (1999). ArticleCASPubMed Google Scholar
Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity11, 299–308 (1999). ArticleCASPubMed Google Scholar
Spangrude, G.J. & Scollay, R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny. J. Immunol.145, 3661–3668 (1990). CASPubMed Google Scholar
Scollay, R., Smith, J. & Stauffer, V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol. Rev.91, 129–157 (1986). ArticleCASPubMed Google Scholar
Buza-Vidas, N. et al. Critical and complementary role of Flt3 and interleukin 7-receptor α signaling in T lymphocyte development. Blood104, Abstract 112 (2004). Google Scholar
Yun, T.J. & Bevan, M.J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J. Immunol.170, 5834–5841 (2003). ArticleCASPubMed Google Scholar
Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity18, 675–685 (2003). ArticleCASPubMed Google Scholar
Fryer, C.J., White, J.B. & Jones, K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell16, 509–520 (2004). ArticleCASPubMed Google Scholar
Lehar, S.M., Dooley, J., Farr, A.G. & Bevan, M.J. Notch ligands Delta1 and Jagged1 transmit distinct signals to T cell precursors. Blood105, 1440–1447 (2005). ArticleCASPubMed Google Scholar
Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zuniga-Pflucker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med.200, 469–479 (2004). ArticleCASPubMedPubMed Central Google Scholar
Perry, S.S., Pierce, L.J., Slayton, W.B. & Spangrude, G.J. Characterization of thymic progenitors in adult mouse bone marrow. J. Immunol.170, 1877–1886 (2003). ArticleCASPubMed Google Scholar
Perry, S.S. et al. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood103, 2990–2996 (2004). ArticleCASPubMed Google Scholar
Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity17, 117–130 (2002). ArticleCASPubMed Google Scholar
Ordentlich, P. et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol.18, 2230–2239 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nie, L., Xu, M., Vladimirova, A. & Sun, X.H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J.22, 5780–5792 (2003). ArticleCASPubMedPubMed Central Google Scholar
Taghon, T., David, E.S., Zuniga-Pflucker, J.C. & Rothenberg, E.V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev.19, 965–978 (2005). ArticleCASPubMedPubMed Central Google Scholar
Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol.14, 637–645 (2002). ArticleCASPubMed Google Scholar
Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity15, 225–236 (2001). ArticleCASPubMed Google Scholar
Carlyle, J.R. & Zuniga-Pflucker, J.C. Lineage commitment and differentiation of T and natural killer lymphocytes in the fetal mouse. Immunol. Rev.165, 63–74 (1998). ArticleCASPubMed Google Scholar
Ceredig, R. The ontogeny of B cells in the thymus of normal, CD3 epsilon knockout (KO), RAG-2 KO and IL-7 transgenic mice. Int. Immunol.14, 87–99 (2002). ArticleCASPubMed Google Scholar
Hashimoto, Y., Montecino-Rodriguez, E., Leathers, H., Stephan, R.P. & Dorshkind, K. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood100, 3504–3511 (2002). ArticleCASPubMed Google Scholar
Goldschneider, I., Komschlies, K.L. & Greiner, D.L. Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J. Exp. Med.163, 1–17 (1986). ArticleCASPubMed Google Scholar