Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. An accessory cell-derived costimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. J. Immunol.142, 2617–2628 (1989). CASPubMed Google Scholar
Boussiotis, V. A. et al. Prevention of T cell anergy by signaling through the γc chain of the IL-2 receptor. Science266, 1039–1042 (1994). ArticleCASPubMed Google Scholar
Quill, H. et al. Anergic Th1 cells express altered levels of the protein tyrosine kinases p56lck and p59fyn. J. Immunol.149, 2887–2893 (1992). CASPubMed Google Scholar
Gajewski, T. F., Qian, D., Fields, P. & Fitch, F. W. Anergic T-lymphocyte clones have altered inositol phosphate, calcium and tyrosine kinase signaling pathways. Proc. Natl Acad. Sci. USA91, 38–42 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B. & Allen, P. M. Partial T cell signaling: Altered phospho-ζ and lack of Zap70 recruitment in APL-induced T cell anergy. Cell79, 913–922 (1994). ArticleCASPubMed Google Scholar
Madrenas, J. et al. ζ phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science267, 515–518 (1995). ArticleCASPubMed Google Scholar
Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science271, 1272–1276 (1996). ArticleCASPubMed Google Scholar
Fields, P. E., Gajewski, T. F. & Fitch, F. W. Blocked Ras activation in anergic CD4+ T cells. Science271, 1276–1278 (1996). ArticleCASPubMed Google Scholar
Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: Blocking of IL-2 gene transcription by activated Rap1. Science278, 124–128 (1997). ArticleCASPubMed Google Scholar
Boussiotis, V. A. et al. p27_kip1_ functions as an anergy factor inhibiting IL-2 transcription and clonal expansion of alloreactive human and murine helper T lymphocytes. Nature Med.6, 290–297 (2000). ArticleCASPubMed Google Scholar
Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA4 regulates peripheral T cell tolenance in vivo. Immunity14, 145–155 (2001). ArticleCASPubMed Google Scholar
Diatchenko, L. et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl Acad. Sci. USA93, 6025–6030 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bradbury, A., Possenti, R., Shooter, R. & Tirone, F. Molecular cloning of PC3, a putatively secreted protein whose mRNA is induced by nerve growth factor and depolarization. Proc. Natl Acad. Sci. USA88, 3353–3357 (1991). ArticleCASPubMedPubMed Central Google Scholar
Fletcher, B. S. et al. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J. Biol. Chem.266, 14511–14518 (1991). CASPubMed Google Scholar
Rimokh, R. et al. A chromosome 12 coding region is juxtoposed to myc protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia. Genes Chrom. Cancer3, 24–36 (1991). ArticleCASPubMed Google Scholar
Varnum, B. C., Reddy, S. T., Koski, R. A. & Herschman, H. R. Synthesis, degradation and subcellular localization of protein encoded by the primary response genes TIS7/PC4 and TIS21/PC3. J. Cell. Physiol.158, 205–213 (1994). ArticleCASPubMed Google Scholar
Rouault, J.-P. et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nature Genet.14, 482–486 (1996). ArticleCASPubMed Google Scholar
Matsuda, S. et al. Tob, a novel protein that interacts with p185_ebr_B2, is associated with anti-proliferative activity. Oncogene12, 705–713 (1996). CASPubMed Google Scholar
Yoshida, Y. et al. ANA, a novel member of Tob/BTG1 family, is expressed in the ventricular zone of the developing central nervous system. Oncogene16, 2687–2693 (1998). ArticleCASPubMed Google Scholar
Ikematsu, N. et al. Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene18, 7432–7441 (1999). ArticleCASPubMed Google Scholar
Elliot, G. & O'Hare, P. Intercellular trafficing and protein delivery by a herpesvirus structural protein. Cell88, 223–233 (1997). Article Google Scholar
DeCaprio, J. A., Furukawa, T., Ajchenbaum, F., Griffin, J. D. & Livingston, D. M. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc. Natl Acad. Sci. USA89, 1795–1798 (1992). ArticleCASPubMedPubMed Central Google Scholar
Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27_kip1_. Nature404, 782–787 (2000). ArticleCASPubMed Google Scholar
Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science283, 680–682 (1999). ArticleCASPubMed Google Scholar
Prevot, D. et al. Relationships of the antiproliferative proteins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex. J. Biol. Chem.276, 9640–9648 (2001). ArticleCASPubMed Google Scholar
Draper, M. P. & Denis, C. L. Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcripitonal regulatory complex. Mol. Cell. Biol.15, 3487–3495 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, Y. et al. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell103, 1085–1097 (2000). ArticleCASPubMed Google Scholar
Itoh, S., Itoh, F., Goumans, M.-J. & ten Dijke, P. Signaling of transforming growth factor-β family members through Smad proteins. Eur. J. Biochem.267, 6954–6967 (2000). ArticleCASPubMed Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflamatory disease. Nature359, 693–699 (1992). ArticleCASPubMedPubMed Central Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). ArticleCASPubMed Google Scholar
Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J.18, 1280–1291 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nakao, A. et al. Blockade of transforming growth factor β/smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med.192, 151–158 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jonk, L. J. C., Itoh, S., Heldin, C.-H., ten Dijke, P. & Kruijer, W. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem.273, 21145–21152 (1998). ArticleCASPubMed Google Scholar
Freeman, G. J. et al. CTLA-4 and CD28 mRNAs are coexpressed in most activated T cells after activation: Expression of CTLA-4 and CD28 messenger RNA does not correlate with the pattern of lymphokine production. J. Immunol.149, 3795–3801 (1992). CASPubMed Google Scholar
Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol.8, 765–772 (1996). ArticleCASPubMed Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999). ArticleCASPubMed Google Scholar
Liu, H.-Y. et al. The Not proteins are part of CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J.4, 1096–1106 (1998). Article Google Scholar
Bucley, A. F., Kuo, C. T. & Leiden, J. M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nature Immunol.2, 698–704 (2001). Article Google Scholar
Turner, J. & Crossley, M. Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci.24, 236–241 (1999). ArticleCASPubMed Google Scholar
Kuo, C. T., Veselits, M. & Leiden, J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science277, 1986–1990 (1997). ArticleCASPubMed Google Scholar
Ghia, P. et al. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analysis of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med.184, 2217–2229 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schreiber, E., Matthias, P., Muller, M. M. & Schaffner, W. Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucleic Acid Res.17, 6419–6420 (1989). ArticleCASPubMedPubMed Central Google Scholar
Nasevicius, A. & Ekker, S. Effective targeted gene “knockdown” in zebrafish. Nature Genet.26, 216–220 (2000). ArticleCASPubMed Google Scholar
Dent, C. L. & Latchman, D. S. in Transcription Factors. A practical approach (ed. Latchman, D. S.)1–26 (Oxford University Press, NY, 1994). Google Scholar