Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression (original) (raw)
Krishnan, V. & Nestler, E.J. Linking molecules to mood: new insight into the biology of depression. Am. J. Psychiatry167, 1305–1320 (2010). ArticlePubMedPubMed Central Google Scholar
Greenberg, P.E. et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry64, 1465–1475 (2003). ArticlePubMed Google Scholar
Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R. & Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry62, 617–627 (2005). ArticlePubMedPubMed Central Google Scholar
Tissot, R. The common pathophysiology of monaminergic psychoses: a new hypothesis. Neuropsychobiology1, 243–260 (1975). ArticleCASPubMed Google Scholar
Duman, R.S., Heninger, G.R. & Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry54, 597–606 (1997). ArticleCASPubMed Google Scholar
Palucha, A. & Pilc, A. The involvement of glutamate in the pathophysiology of depression. Drug News Perspect.18, 262–268 (2005). ArticleCASPubMed Google Scholar
Christoffel, D.J., Golden, S.A. & Russo, S.J. Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci.22, 535–549 (2011). ArticleCASPubMedPubMed Central Google Scholar
Capuron, L. & Miller, A.H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther.130, 226–238 (2011). ArticleCASPubMedPubMed Central Google Scholar
Manji, H.K. et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry53, 707–742 (2003). ArticleCASPubMed Google Scholar
Vidal, R. et al. New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways. Curr. Pharm. Des.17, 521–533 (2011). ArticleCASPubMed Google Scholar
Kang, H.J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med.18, 1413–1417 (2012). ArticleCASPubMedPubMed Central Google Scholar
Christoffel, D.J. et al. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci.31, 314–321 (2011). ArticleCASPubMedPubMed Central Google Scholar
Christoffel, D.J. et al. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology37, 2615–2623 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nestler, E.J. & Carlezon, W.A. Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry59, 1151–1159 (2006). ArticleCASPubMed Google Scholar
Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell131, 391–404 (2007). ArticleCASPubMed Google Scholar
Wei, Q. et al. Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization. Biol. Psychiatry71, 224–231 (2012). ArticleCASPubMed Google Scholar
Andrus, B.M. et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry17, 49–61 (2012). ArticleCASPubMed Google Scholar
Tolias, K.F., Duman, J.G. & Um, K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog. Neurobiol.94, 133–148 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kiraly, D.D., Eipper-Mains, J.E., Mains, R.E. & Eipper, B.A. Synaptic plasticity, a symphony in GEF. ACS Chem. Neurosci.1, 348–365 (2010). ArticleCASPubMedPubMed Central Google Scholar
Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science311, 864–868 (2006). ArticleCASPubMed Google Scholar
Golden, S.A., Covington, H.E. III, Berton, O. & Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc.6, 1183–1191 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, M.B. et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci.29, 7820–7832 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron48, 303–314 (2005). ArticleCASPubMed Google Scholar
Feng, J. et al. Cocaine induced transcriptome and epigenome changes in mouse nucleus accumbens. Soc. Neurosci. Abstr. 458.12/T7 (2012).
Dietz, D.M. et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci.15, 891–896 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci.9, 42 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, L., Melendez, J., Campbell, K., Kuan, C.Y. & Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol.325, 162–170 (2009). ArticleCASPubMed Google Scholar
Pontrello, C.G. et al. Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc. Natl. Acad. Sci. USA109, E442–E451 (2012). ArticlePubMedPubMed Central Google Scholar
Bongmba, O.Y., Martinez, L., Elhardt, M., Butler, K. & Tejada-Simon, M. Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology. Brain Res.1399, 79–95 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, L.Y. et al. Physiological activation of synaptic Rac1 PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J. Neurosci.30, 10977–10984 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci.13, 327–332 (2010). ArticleCASPubMedPubMed Central Google Scholar
Golden, S.A. & Russo, S.J. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb. Perspect. Med.2, a011957 (2012). ArticleCASPubMedPubMed Central Google Scholar
de Curtis, I. Functions of Rac GTPases during neuronal development. Dev. Neurosci.30, 47–58 (2008). ArticleCASPubMed Google Scholar
Koh, C.-G. Rho GTPases and their regulators in neuronal functions and development. Neurosignals15, 228–237 (2006). ArticleCASPubMed Google Scholar
Martinez, L.A. & Tejada-Simon, M. Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology61, 305–312 (2011). ArticleCASPubMedPubMed Central Google Scholar
Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci.10, 647–658 (2009). ArticleCASPubMed Google Scholar
Yoshihara, Y., De Roo, M. & Muller, D. Dendritic spine formation and stabilization. Curr. Opin. Neurobiol.19, 146–153 (2009). ArticleCASPubMed Google Scholar
Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature379, 837–840 (1996). ArticleCASPubMed Google Scholar
Nakayama, A.Y., Harms, M.B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci.20, 5329–5338 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tashiro, A. & Yuste, R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol. Cell. Neurosci.26, 429–440 (2004). ArticleCASPubMed Google Scholar
Kuhn, T.B. et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J. Neurobiol.44, 126–144 (2000). ArticleCASPubMed Google Scholar
Rex, C.S. et al. Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol.186, 85–97 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science329, 959–964 (2010). ArticleCASPubMedPubMed Central Google Scholar
LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci.13, 1137–1143 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stolzenburg, S., Bilsland, A., Keith, W.N. & Rots, M.G. Modulation of gene expression using zinc finger–based artificial transcription factors. Methods Mol. Biol.649, 117–132 (2010). ArticleCASPubMed Google Scholar
Tsankova, N. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci.9, 519–544 (2006). ArticleCASPubMed Google Scholar
Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex16, 313–320 (2006). ArticlePubMed Google Scholar
Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One3, e1997 (2008). ArticleCASPubMedPubMed Central Google Scholar