Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies (original) (raw)
Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer11, 268–277 (2011). ArticleCASPubMed Google Scholar
DeFrancesco, L. Fits and starts for Geron. Nat. Biotechnol.27, 877 (2009). ArticleCAS Google Scholar
Lee, A.S. et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle8, 2608–2612 (2009). ArticleCASPubMed Google Scholar
Roy, N.S. et al. Functional engraftment of human ES cell–derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12, 1259–1268 (2006). ArticleCASPubMed Google Scholar
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature480, 547–551 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cui, L. et al. WNT signaling determines tumorigenicity and function of ESC-derived retinal progenitors. J. Clin. Invest.123, 1647–1661 (2013). ArticleCASPubMedPubMed Central Google Scholar
Doi, D. et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson's disease. Stem Cells30, 935–945 (2012). ArticleCASPubMed Google Scholar
Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med.6, e1000029 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Strauss, S. Geron trial resumes, but standards for stem cell trials remain elusive. Nat. Biotechnol.28, 989–990 (2010). ArticleCASPubMed Google Scholar
Schwartz, S.D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet379, 713–720 (2012). ArticleCASPubMed Google Scholar
Ben-Porath, I. et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40, 499–507 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell143, 313–324 (2010). ArticleCASPubMedPubMed Central Google Scholar
Närvä, E. et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol.28, 371–377 (2010). ArticlePubMedCAS Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASPubMed Google Scholar
Markoulaki, S. et al. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat. Biotechnol.27, 169–171 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wernig, M., Meissner, A., Cassady, J.P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2, 10–12 (2008). ArticleCASPubMed Google Scholar
Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121, 465–477 (2005). ArticleCASPubMed Google Scholar
Lee, T.K., Cheung, V.C. & Ng, I.O. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett. published online http://dx.doi.org/10.1016/j.canlet.2012.05.001 (28 May 2012).
Bass, A.J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet.41, 1238–1242 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rowland, B.D., Bernards, R. & Peeper, D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat. Cell Biol.7, 1074–1082 (2005). ArticleCASPubMed Google Scholar
Soldner, F. et al. Parkinson's disease patient–derived induced pluripotent stem cells free of viral reprogramming factors. Cell136, 964–977 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science322, 945–949 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ban, H. et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl. Acad. Sci. USA108, 14234–14239 (2011). ArticleCASPubMedPubMed Central Google Scholar
Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell7, 618–630 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell8, 633–638 (2011). ArticleCASPubMed Google Scholar
Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T. & Yamanaka, S. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci. USA107, 14152–14157 (2010). ArticleCASPubMedPubMed Central Google Scholar
Desponts, C. & Ding, S. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol. Biol.636, 207–218 (2010). ArticleCASPubMed Google Scholar
Laurent, L.C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell8, 106–118 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hussein, S.M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature471, 58–62 (2011). ArticleCASPubMed Google Scholar
Ohm, J.E. et al. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res.70, 7662–7673 (2010). ArticleCASPubMedPubMed Central Google Scholar
Harris, W.J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell21, 473–487 (2012). ArticleCASPubMed Google Scholar
Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science300, 489–492 (2003). ArticleCASPubMed Google Scholar
Wollert, K.C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004). ArticlePubMed Google Scholar
Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med.15, 577–583 (2009). ArticleCASPubMed Google Scholar
Hyka-Nouspikel, N. et al. Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells30, 1901–1910 (2012). ArticleCASPubMed Google Scholar
Desmarais, J.A. et al. Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells30, 1385–1393 (2012). ArticleCASPubMed Google Scholar
Mayshar, Y. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell7, 521–531 (2010). ArticleCASPubMed Google Scholar
Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol.22, 53–54 (2004). ArticleCASPubMed Google Scholar
Lefort, N. et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol.26, 1364–1366 (2008). ArticleCASPubMed Google Scholar
Spits, C. et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol.26, 1361–1363 (2008). ArticleCASPubMed Google Scholar
Amps, K. et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol.29, 1132–1144 (2011). ArticleCASPubMed Google Scholar
Werbowetski-Ogilvie, T.E. et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat. Biotechnol.27, 91–97 (2009). ArticleCASPubMed Google Scholar
Narsinh, K.H. et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Invest.121, 1217–1221 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pearl, J.I., Kean, L.S., Davis, M.M. & Wu, J.C. Pluripotent stem cells: immune to the immune system? Sci. Transl. Med.4, 164ps125 (2012). ArticleCAS Google Scholar
de Almeida, P.E., Ransohoff, J.D., Nahid, A. & Wu, J.C. Immunogenicity of pluripotent stem cells and their derivatives. Circ. Res.112, 549–561 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhao, T., Zhang, Z.N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature474, 212–215 (2011). ArticleCASPubMed Google Scholar
Araki, R. et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature494, 100–104 (2013). ArticleCASPubMed Google Scholar
Guha, P., Morgan, J.W., Mostoslavsky, G., Rodrigues, N.P. & Boyd, A.S. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell12, 407–412 (2013). ArticleCASPubMed Google Scholar
Drukker, M. et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. USA99, 9864–9869 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rideout, W.M. III, Hochedlinger, K., Kyba, M., Daley, G.Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002). ArticleCASPubMed Google Scholar
Pearl, J.I. et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell8, 309–317 (2011). ArticleCASPubMedPubMed Central Google Scholar
Swijnenburg, R.J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl. Acad. Sci. USA105, 12991–12996 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, S.D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet379, 713–720 (2012). ArticleCASPubMed Google Scholar
Choo, A.B. et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells26, 1454–1463 (2008). ArticleCASPubMed Google Scholar
Tang, C. et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol.29, 829–834 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dubois, N.C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol.29, 1011–1018 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ben-David, U. et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell12, 167–179 (2013). ArticleCASPubMed Google Scholar
Peckham, M.J., McElwain, T.J., Barrett, A. & Hendry, W.F. Combined management of malignant teratoma of the testis. Lancet314, 267–270 (1979). Article Google Scholar
Herszfeld, D. et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat. Biotechnol.24, 351–357 (2006). ArticleCASPubMed Google Scholar