An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells (original) (raw)

References

  1. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).
    Article CAS Google Scholar
  2. Papin, J.A., Hunter, T., Palsson, B.O. & Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6, 99–111 (2005).
    Article CAS Google Scholar
  3. Bauch, A. & Superti-Furga, G. Charting protein complexes, signaling pathways, and networks in the immune system. Immunol. Rev. 210, 187–207 (2006).
    Article CAS Google Scholar
  4. Hinsby, A.M. et al. A wiring of the human nucleolus. Mol. Cell 22, 285–295 (2006).
    Article CAS Google Scholar
  5. Fox, A.H. & Lamond, A.I. Nuclear processes controlled by molecular machines. Genome Biol. 3 REPORTS4016 (2002).
  6. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).
    Article CAS Google Scholar
  7. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).
    Article CAS Google Scholar
  8. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).
    Article CAS Google Scholar
  9. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).
    Article CAS Google Scholar
  10. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).
    Article CAS Google Scholar
  11. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).
    Article CAS Google Scholar
  12. Bouwmeester, T. et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).
    Article CAS Google Scholar
  13. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).
    Article CAS Google Scholar
  14. Brajenovic, M., Joberty, G., Kuster, B., Bouwmeester, T. & Drewes, G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J. Biol. Chem. 279, 12804–12811 (2004).
    Article CAS Google Scholar
  15. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).
    Article CAS Google Scholar
  16. Ghosh, S. & Karin, M. Missing pieces in the NF-kappaB puzzle. Cell 109, S81–S96 (2002).
    Article CAS Google Scholar
  17. Sjobring, U., Bjorck, L. & Kastern, W. Streptococcal protein G. Gene structure and protein binding properties. J. Biol. Chem. 266, 399–405 (1991).
    CAS PubMed Google Scholar
  18. Sauer-Eriksson, A.E., Kleywegt, G.J., Uhlen, M. & Jones, T.A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265–278 (1995).
    Article CAS Google Scholar
  19. Keefe, A.D., Wilson, D.S., Seelig, B. & Szostak, J.W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001).
    Article CAS Google Scholar
  20. Collis, S.J., DeWeese, T.L., Jeggo, P.A. & Parker, A.R. The life and death of DNA-PK. Oncogene 24, 949–961 (2005).
    Article CAS Google Scholar
  21. Gottlieb, T.M. & Jackson, S.P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).
    Article CAS Google Scholar
  22. Li, B. & Comai, L. Functional interaction between Ku and the werner syndrome protein in DNA end processing. J. Biol. Chem. 275, 28349–28352 (2000).
    Article CAS Google Scholar
  23. Aoki, Y., Zhao, G., Qiu, D., Shi, L. & Kao, P.N. CsA-sensitive purine-box transcriptional regulator in bronchial epithelial cells contains NF45, NF90, and Ku. Am. J. Physiol. 275, L1164–L1172 (1998).
    CAS PubMed Google Scholar
  24. Crevel, G., Ivetic, A., Ohno, K., Yamaguchi, M. & Cotterill, S. Nearest neighbour analysis of MCM protein complexes in Drosophila melanogaster. Nucleic Acids Res. 29, 4834–4842 (2001).
    Article CAS Google Scholar
  25. Fouraux, M.A., Bouvet, P., Verkaart, S., van Venrooij, W.J. & Pruijn, G.J. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J. Mol. Biol. 320, 475–488 (2002).
    Article CAS Google Scholar
  26. Park, J., Wood, M.A. & Cole, M.D. BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol. Cell. Biol. 22, 1307–1316 (2002).
    Article CAS Google Scholar
  27. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).
    Article CAS Google Scholar
  28. Brown, D. & Superti-Furga, G. Rediscovering the sweet spot in drug discovery. Drug Discov. Today 8, 1067–1077 (2003).
    Article Google Scholar
  29. Fishman, M.C. & Porter, J.A. Pharmaceuticals: a new grammar for drug discovery. Nature 437, 491–493 (2005).
    Article CAS Google Scholar
  30. Cheeseman, I.M. & Desai, A. A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci. STKE 2005, pl1 (2005).
    PubMed Google Scholar
  31. Bertwistle, D., Sugimoto, M. & Sherr, C.J. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol. Cell. Biol. 24, 985–996 (2004).
    Article CAS Google Scholar
  32. Canton, D.A. et al. The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol. Cell. Biol. 25, 3519–3534 (2005).
    Article CAS Google Scholar
  33. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).
    Article Google Scholar
  34. Naviaux, R.K., Costanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).
    CAS PubMed Google Scholar
  35. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).
    Article CAS Google Scholar

Download references