OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling (original) (raw)

References

  1. Kriegstein, A., Noctor, S. & Martínez-Cerdeño, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).
    Article CAS PubMed Google Scholar
  2. Molnár, Z. et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci. 23, 921–934 (2006).
    Article PubMed PubMed Central Google Scholar
  3. Abdel-Mannan, O., Cheung, A.F. & Molnár, Z. Evolution of cortical neurogenesis. Brain Res. Bull. 75, 398–404 (2008).
    Article CAS PubMed Google Scholar
  4. Fish, J.L., Kennedy, H., Dehay, C. & Huttner, W.B. Making bigger brains—the evolution of neural progenitor cell division. J. Cell Sci. 121, 2783–2793 (2008).
    Article CAS PubMed Google Scholar
  5. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  6. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).
    Article PubMed Google Scholar
  7. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  8. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Bräuninger, M. & Huttner, W.B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3, e2388 (2008).
    Article PubMed PubMed Central Google Scholar
  9. Smart, I.H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).
    Article PubMed Google Scholar
  10. Murphy, W.J., Pringle, T.H., Crider, T.A., Springer, M.S. & Miller, W. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 17, 413–421 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  11. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  12. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009).
    Article PubMed PubMed Central Google Scholar
  13. Bayatti, N. et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb. Cortex 18, 1536–1548 (2008).
    Article PubMed Google Scholar
  14. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).
    Article PubMed Google Scholar
  15. Mo, Z. & Zecevic, N. Is Pax6 critical for neurogenesis in the human fetal brain? Cereb. Cortex 18, 1455–1465 (2008).
    Article PubMed Google Scholar
  16. Carney, R.S., Bystron, I., Lopez-Bendito, G. & Molnár, Z. Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct. Funct. 212, 37–54 (2007).
    Article PubMed Google Scholar
  17. Kriegstein, A.R. & Götz, M. Radial glia diversity: a matter of cell fate. Glia 43, 37–43 (2003).
    Article PubMed Google Scholar
  18. Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840 (1980).
    Article CAS PubMed Google Scholar
  19. Woodhams, P.L., Bascó, E., Hajós, F., Csillág, A. & Balázs, R. Radial glia in the developing mouse cerebral cortex and hippocampus. Anat. Embryol. (Berl.) 163, 331–343 (1981).
    Article CAS Google Scholar
  20. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).
    Article CAS PubMed Google Scholar
  21. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  22. Noctor, S.C., Martínez-Cerdeño, V. & Kriegstein, A.R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).
    Article PubMed PubMed Central Google Scholar
  23. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  24. Kamei, Y. et al. Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase–phosphorylated vimentin. Glia 23, 191–199 (1998).
    Article CAS PubMed Google Scholar
  25. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. USA 94, 12425–12430 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  26. Manabe, N. et al. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn. 225, 61–69 (2002).
    Article CAS PubMed Google Scholar
  27. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  28. Costa, M.R., Wen, G., Lepier, A., Schroeder, T. & Götz, M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).
    Article CAS PubMed Google Scholar
  29. Aaku-Saraste, E., Hellwig, A. & Huttner, W.B. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure—remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180, 664–679 (1996).
    Article CAS PubMed Google Scholar
  30. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).
    Article CAS PubMed Google Scholar
  31. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).
    Article CAS PubMed Google Scholar
  32. Smart, I.H. & McSherry, G.M. Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J. Anat. 146, 141–152 (1986).
    CAS PubMed PubMed Central Google Scholar
  33. Neal, J. et al. Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J. Anat. 210, 66–77 (2007).
    Article PubMed PubMed Central Google Scholar
  34. Schmid, R.S. & Anton, E.S. Role of integrins in the development of the cerebral cortex. Cereb. Cortex 13, 219–224 (2003).
    Article PubMed Google Scholar
  35. Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U. & Gotz, M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133, 3245–3254 (2006).
    Article CAS PubMed Google Scholar
  36. Lathia, J.D., Rao, M.S., Mattson, M.P. & Ffrench-Constant, C. The microenvironment of the embryonic neural stem cell: lessons from adult niches? Dev. Dyn. 236, 3267–3282 (2007).
    Article CAS PubMed Google Scholar
  37. Radakovits, R., Barros, C.S., Belvindrah, R., Patton, B. & Müller, U. Regulation of radial glial survival by signals from the meninges. J. Neurosci. 29, 7694–7705 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  38. Calvete, J.J. et al. Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063–1074 (2005).
    Article CAS PubMed Google Scholar
  39. Hirsch, E. et al. Alpha v integrin subunit is predominantly located in nervous tissue and skeletal muscle during mouse development. Dev. Dyn. 201, 108–120 (1994).
    Article CAS PubMed Google Scholar
  40. Yoshida, N. et al. Decrease in expression of alpha 5 beta 1 integrin during neuronal differentiation of cortical progenitor cells. Exp. Cell Res. 287, 262–271 (2003).
    Article CAS PubMed Google Scholar
  41. Wierzbicka-Patynowski, I. et al. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J. Biol. Chem. 274, 37809–37814 (1999).
    Article CAS PubMed Google Scholar
  42. Flanagan, L.A., Rebaza, L.M., Derzic, S., Schwartz, P.H. & Monuki, E.S. Regulation of human neural precursor cells by laminin and integrins. J. Neurosci. Res. 83, 845–856 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  43. Middeldorp, J. et al. GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development 137, 313–321 (2010).
    Article CAS PubMed Google Scholar
  44. Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).
    Article CAS PubMed Google Scholar
  45. Fish, J.L., Kosodo, Y., Enard, W., Pääbo, S. & Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 103, 10438–10443 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  46. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).
    CAS PubMed PubMed Central Google Scholar
  47. Fuchs, E. Finding one's niche in the skin. Cell Stem Cell 4, 499–502 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  48. Karbanová, J. et al. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J. Histochem. Cytochem. 56, 977–993 (2008).
    Article PubMed PubMed Central Google Scholar
  49. Giebel, B. et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104, 2332–2338 (2004).
    Article CAS PubMed Google Scholar
  50. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
    Article CAS PubMed PubMed Central Google Scholar

Download references