Migrating cancer stem cells — an integrated concept of malignant tumour progression (original) (raw)
Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer3, 895–902 (2003). ArticleCAS Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol.15, 740–746 (2003). ArticleCASPubMed Google Scholar
Brabletz, T. et al. Variable β-catenin expression in colorectal cancer indicates tumour progression driven by the tumour environment. Proc. Natl Acad. Sci. USA98, 10356–10361 (2001). ArticleCASPubMedPubMed Central Google Scholar
Barker, N. & Clevers, H. Tumour environment: a potent driving force in colorectal cancer? Trends Mol. Med.7, 535–537 (2001). ArticleCASPubMed Google Scholar
Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer1, 46–54 (2001). ArticleCAS Google Scholar
Morin, P. J. et al. Activation of β-catenin–Tcf signalling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCASPubMed Google Scholar
Hülsken, J. & Behrens, J. The Wnt signalling pathway. J. Cell Sci.115, 3977–3978 (2002). Article Google Scholar
Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). ArticleCASPubMed Google Scholar
Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signalling. Nature Genet.32, 594–605 (2002). ArticleCASPubMed Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signalling by a pharmacological GSK-3-specific inhibitor. Nature Med.10, 55–63 (2004). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
He, X. C. et al. BMP signalling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signalling. Nature Genet.36, 1117–1121 (2004). ArticleCASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumours in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). ArticleCASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545. (2001). ArticleCASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCASPubMed Google Scholar
Angerer, L. & Angerer, R. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Semin. Cell Dev. Biol.10, 327–334 (1999). ArticleCASPubMed Google Scholar
Liebner, S. et al. β-catenin is required for endothelial–mesenchymal transformation during heart cushion development in the mouse. J. Cell Biol.166, 359–367 (2004). ArticleCASPubMedPubMed Central Google Scholar
Muller, T., Bain, G., Wang, X. & Papkoff, J. Regulation of epithelial cell migration and tumour formation by β-catenin signalling. Exp. Cell Res.280, 119–133 (2002). ArticlePubMed Google Scholar
Kim, K., Lu, Z. & Hay, E. D. Direct evidence for a role of β-catenin/LEF-1 signalling pathway in induction of EMT. Cell Biol. Int.26, 463–476 (2002). ArticleCASPubMed Google Scholar
Mariadason, J. M. et al. Down-regulation of β-catenin TCF signalling is linked to colonic epithelial cell differentiation. Cancer Res.61, 3465–3471 (2001). CASPubMed Google Scholar
Naishiro, Y. et al. Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of β-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res.61, 2751–2758 (2001). CASPubMed Google Scholar
Conacci-Sorrell, M. et al. Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of β-catenin signalling, Slug, and MAPK. J. Cell Biol.163, 847–857 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumour stem cells also regulated by the microenvironment? Cancer Cell7, 17–23 (2005). CASPubMedPubMed Central Google Scholar
Jordan, C. T. Cancer stem cell biology: from leukemia to solid tumours. Curr. Opin. Cell Biol.16, 708–712 (2004). ArticleCASPubMed Google Scholar
Xue, C., Plieth, D., Venkov, C., Xu, C. & Neilson, E. G. The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res.63, 3386–3394 (2003). CASPubMed Google Scholar
Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays23, 912–923 (2001). ArticleCASPubMed Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Eger, A. et al. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene23, 2672–2680 (2004). ArticleCASPubMed Google Scholar
Brabletz, T., Herrmann, K., Jung, A., Faller, G. & Kirchner, T. Expression of nuclear β-catenin and c-myc is correlated with tumour size but not with proliferative activity of colorectal adenomas. Am. J. Pathol.156, 865–870 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kirchner, T. & Brabletz, T. Patterning and nuclear β-catenin expression in the colonic adenoma–carcinoma sequence: analogies with embryonic gastrulation. Am. J. Pathol.157, 1113–1121 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jung, A. et al. The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear β-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am. J. Pathol.159, 1613–1617 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brabletz, T. et al. Downregulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumour environment in malignant tumour progression. Cancer Res.64, 6973–6977 (2004). ArticleCASPubMed Google Scholar
He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 (1998). ArticleCASPubMed Google Scholar
Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature398, 422–426 (1999). ArticleCASPubMed Google Scholar
Zhang, T. et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res.61, 8664–8667 (2001). CASPubMed Google Scholar
Kim, P. J., Plescia, J., Clevers, H., Fearon, E. R. & Altieri, D. C. Survivin and molecular pathogenesis of colorectal cancer. Lancet362, 205–209 (2003). ArticleCASPubMed Google Scholar
Gavert, N. et al. L1, a novel target of b-catenin signalling, transforms tumour cells and is expressed at the invasive front of colon cancers. J. Cell Biol.168, 633–642 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hlubek, F., Jung, A., Kotzor, N., Kirchner, T. & Brabletz, T. Expression of the invasion factor laminin γ2 in colorectal carcinomas is regulated by β-catenin. Cancer Res.61, 8089–8093 (2001). CASPubMed Google Scholar
Ueno, H., Murphy, J., Jass, J. R., Mochizuki, H. & Talbot, I. C. Tumour 'budding' as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology40, 127–132 (2002). ArticleCASPubMed Google Scholar
Oloumi, A., McPhee, T. & Dedhar, S. Regulation of E-cadherin expression and b-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim. Biophys. Acta1691, 1–15 (2004). ArticleCASPubMed Google Scholar
Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signalling pathways. J. Cell Biol.156, 299–313 (2002). ArticleCASPubMedPubMed Central Google Scholar
Grunert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Rev. Mol. Cell Biol.4, 657–665 (2003). Article Google Scholar
Kajita, M., McClinic, K. N. & Wade, P. A. Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol. Cell Biol.24, 7559–7566 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumour metastasis. Cell117, 927–939 (2004). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell113, 207–219 (2003). ArticleCASPubMed Google Scholar
Blanco, M. J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene21, 3241–3246 (2002). ArticleCASPubMed Google Scholar
Nakajima, S. et al. N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin. Cancer Res.10, 4125–4133 (2004). ArticleCASPubMed Google Scholar
Rosivatz, E. et al. Differential expression of the epithelial–mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am. J. Pathol.161, 1881–1891 (2002). ArticleCASPubMedPubMed Central Google Scholar
McAlhany, S. J. et al. Decreased stromal expression and increased epithelial expression of WFDC1/ps20 in prostate cancer is associated with reduced recurrence-free survival. Prostate61, 182–191 (2004). ArticleCASPubMed Google Scholar
Nieto, M. A. The Snail superfamily of zinc-finger transcription factors. Nature Rev. Mol. Cell Biol.3, 155–166 (2002). ArticleCAS Google Scholar
Pantel, K. & Woelfle, U. Micrometastasis in breast cancer and other solid tumours. J. Biol. Regul. Homeost. Agents18, 120–125 (2004). CASPubMed Google Scholar