Pianese, G. Beitrag zur histologie und Aetiologie der carcinoma histologische und experimentelle. Beitr. Pathol. Anat. Allgem. Pathol.142, 1–193 (1896). Google Scholar
Gani, R. The nucleoli of cultured human lymphocytes. I. Nucleolar morphology in relation to transformation and the DNA cycle. Exp. Cell Res.97, 249–258 (1976). ArticleCASPubMed Google Scholar
Johnson, L. F., Levis, R., Abelson, H. T., Green, H. & Penman, S. Changes in RNA in relation to growth of the fibroblast. IV. Alterations in theproduction and processing of mRNA and rRNA in resting and growing cells. J. Cell Biol.71, 933–938 (1976). ArticleCASPubMed Google Scholar
Zetterberg, A., Larsson, O. & Wiman, K. G. What is the restriction point? Curr. Opin. Cell. Biol.7, 835–842 (1995). ArticleCASPubMed Google Scholar
Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature456, 971–975 (2008). This paper directly linksMycoverexpression to cancer development through alteration of translational control. MYC reduces IRES-dependentCdk11translation during mitosis and increases chromosome instability. ArticleCASPubMedPubMed Central Google Scholar
Getz, M. J., Elder, P. K., Benz, E. W. Jr, Stephens, R. E. & Moses, H. L. Effect of cell proliferation on levels and diversity of poly(A)-containing mRNA. Cell7, 255–265 (1976). ArticleCASPubMed Google Scholar
Connolly, E., Braunstein, S., Formenti, S. & Schneider, R. J. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol. Cell. Biol.26, 3955–3965 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans.34, 7–11 (2006). ArticleCASPubMed Google Scholar
Donze, O., Jagus, R., Koromilas, A. E., Hershey, J. W. & Sonenberg, N. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J.14, 3828–3834 (1995). ArticleCASPubMedPubMed Central Google Scholar
Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G. & Sonenberg, N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science257, 1685–1689 (1992). ArticleCASPubMed Google Scholar
Tejada, S. et al. Eukaryotic initiation factors (eIF) 2α and 4E expression, localization, and phosphorylation in brain tumors. J. Histochem. Cytochem.57, 503–512 (2009). ArticleCASPubMedPubMed Central Google Scholar
Abraham, N. et al. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J. Biol. Chem.274, 5953–5962 (1999). ArticleCASPubMed Google Scholar
Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J.24, 3470–3481 (2005). ArticleCASPubMedPubMed Central Google Scholar
Koritzinsky, M. et al. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J.25, 1114–1125 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Rev. Cancer8, 851–864 (2008). ArticleCAS Google Scholar
Schewe, D. M. & Aguirre-Ghiso, J. A. Inhibition of eIF2α dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res.69, 1545–1552 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dong, Z. & Zhang, J. T. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol.59, 169–180 (2006). ArticlePubMed Google Scholar
Zhang, L., Pan, X. & Hershey, J. W. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem.282, 5790–5800 (2007). ArticleCASPubMed Google Scholar
Dong, Z., Liu, L. H., Han, B., Pincheira, R. & Zhang, J. T. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene23, 3790–3801 (2004). ArticleCASPubMed Google Scholar
Dong, Z. & Zhang, J. T. EIF3 p170, a mediator of mimosine effect on protein synthesis and cell cycle progression. Mol. Biol. Cell14, 3942–3951 (2003). ArticleCASPubMedPubMed Central Google Scholar
Scoles, D. R., Yong, W. H., Qin, Y., Wawrowsky, K. & Pulst, S. M. Schwannomin inhibits tumorigenesis through direct interaction with the eukaryotic initiation factor subunit c (eIF3c). Hum. Mol. Genet.15, 1059–1070 (2006). ArticleCASPubMed Google Scholar
Nupponen, N. N. et al. Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am. J. Pathol.154, 1777–1783 (1999). ArticleCASPubMedPubMed Central Google Scholar
Saramaki, O. et al. Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am. J. Pathol.159, 2089–2094 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cappuzzo, F. et al. MYC and EIF3H coamplification significantly improve response and survival of non-small cell lung cancer patients (NSCLC) treated with gefitinib. J. Thorac Oncol.4, 472–478 (2009). ArticlePubMedPubMed Central Google Scholar
Shi, J. et al. Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene25, 4923–4936 (2006). ArticleCASPubMed Google Scholar
Marchetti, A. et al. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J. Virol.69, 1932–1938 (1995). This paper remains the clearest example of transformation by a retrovirus that alters translational control. It shows that MMTV inserts withinEIf3e(also known asInt6) to truncate its expression and induce mammary tumorigenesis in the mouse. ArticleCASPubMedPubMed Central Google Scholar
Rasmussen, S. B., Kordon, E., Callahan, R. & Smith, G. H. Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene20, 5291–5301 (2001). ArticleCASPubMed Google Scholar
Mayeur, G. L. & Hershey, J. W. Malignant transformation by the eukaryotic translation initiation factor 3 subunit p48 (eIF3e). FEBS Lett.514, 49–54 (2002). ArticleCASPubMed Google Scholar
Mack, D. L., Boulanger, C. A., Callahan, R. & Smith, G. H. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res.9, R42 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Marchetti, A., Buttitta, F., Pellegrini, S., Bertacca, G. & Callahan, R. Reduced expression of INT-6/eIF3-p48 in human tumors. Int. J. Oncol.18, 175–179 (2001). CASPubMed Google Scholar
Umar, A. et al. Identification of a putative protein profile associating with tamoxifen therapy-resistance in breast cancer. Mol. Cell. Proteomics8, 1278–1294 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zanelli, C. F. & Valentini, S. R. Is there a role for eIF5A in translation? Amino Acids33, 351–358 (2007). ArticleCASPubMed Google Scholar
Jenkins, Z. A., Haag, P. G. & Johansson, H. E. Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics71, 101–109 (2001). ArticleCASPubMed Google Scholar
Benne, R., Brown-Luedi, M. L. & Hershey, J. W. Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem.253, 3070–3077 (1978). ArticleCASPubMed Google Scholar
Kemper, W. M., Berry, K. W. & Merrick, W. C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Bα and M2Bβ. J. Biol. Chem.251, 5551–5557 (1976). ArticleCASPubMed Google Scholar
Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature459, 118–121 (2009). ArticleCASPubMedPubMed Central Google Scholar
Guan, X. Y. et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res.64, 4197–4200 (2004). ArticleCASPubMed Google Scholar
Hanauske-Abel, H. M. et al. Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF-5A in onset of DNA replication. FEBS Lett.366, 92–98 (1995). ArticleCASPubMed Google Scholar
Cracchiolo, B. M. et al. Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant proliferation in intraepithelial neoplasia of the vulva. Gynecol. Oncol.94, 217–222 (2004). ArticleCASPubMed Google Scholar
Balabanov, S. et al. Hypusination of eukaryotic initiation factor 5A (eIF5A): a novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach. Blood109, 1701–1711 (2007). ArticleCASPubMed Google Scholar
Miluzio, A., Beugnet, A., Volta, V. & Biffo, S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep.10, 459–465 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rosso, P. et al. Overexpression of p27BBP in head and neck carcinomas and their lymph node metastases. Head Neck26, 408–417 (2004). ArticlePubMed Google Scholar
Sanvito, F. et al. Expression of a highly conserved protein, p27BBP, during the progression of human colorectal cancer. Cancer Res.60, 510–516 (2000). CASPubMed Google Scholar
Flavin, R. J. et al. Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod. Pathol.21, 676–684 (2008). ArticleCASPubMed Google Scholar
Gandin, V. et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature455, 684–688 (2008). This paper expanded the understanding of the role of protein synthesis in cancer to include regulation of the 60S ribosome subunit and its ability to form translation-capable 80S ribosomes through external signals acting on eIF6. ArticleCASPubMedPubMed Central Google Scholar
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graff, J. R., Konicek, B. W., Carter, J. H. & Marcusson, E. G. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res.68, 631–634 (2008). ArticleCASPubMed Google Scholar
Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature345, 544–547 (1990). ArticleCASPubMed Google Scholar
Lazaris-Karatzas, A. & Sonenberg, N. The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol. Cell. Biol.12, 1234–1238 (1992). CASPubMedPubMed Central Google Scholar
Lazaris-Karatzas, A. et al. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev.6, 1631–1642 (1992). The first study to clearly identify a translation factor (eIF4E) as an effector of an oncogenic pathway. It showed that eIF4E overexpression, as occurs in many cancers, is stimulated by the Ras pathway, and is an essential partner in tumorigenesis through increased translation. ArticleCASPubMed Google Scholar
Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med.10, 484–486 (2004). ArticleCASPubMed Google Scholar
Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428, 332–337 (2004). ArticleCASPubMed Google Scholar
Koromilas, A. E., Lazaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J.11, 4153–4158 (1992). ArticleCASPubMedPubMed Central Google Scholar
Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J. & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl. Acad. Sci. USA90, 6175–6178 (1993). ArticleCASPubMedPubMed Central Google Scholar
Mamane, Y. et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One2, e242 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Larsson, O. et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res.67, 6814–6824 (2007). ArticleCASPubMed Google Scholar
Schneider, R. J. & Sonenberg, N. in Translational Control in Biology and Medicine (eds. Mathews, M. B., Sonenberg, N. & Hershey, J. W. B.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2007). Google Scholar
Waskiewicz, A. J. et al. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol.19, 1871–1880 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. H., Miller, F. R., Tait, L., Zheng, J. & Novak, R. F. Proteomic and phosphoproteomic alterations in benign, premalignant and tumor human breast epithelial cells and xenograft lesions: biomarkers of progression. Int. J. Cancer124, 2813–2828 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graff, J. R. et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res.69, 3866–3873 (2009). ArticleCASPubMed Google Scholar
Wendel, H. G. et al. Dissecting eIF4E action in tumorigenesis. Genes Dev.21, 3232–3237 (2007). Using a mouse lymphoma model, this study demonstrated an essential role for eIF4E phosphorylation in promoting tumorigenesis and anti-apoptosis, in part by increased translation ofMcl1. ArticleCASPubMedPubMed Central Google Scholar
Rahmani, M., Davis, E. M., Bauer, C., Dent, P. & Grant, S. Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J. Biol. Chem.280, 35217–35227 (2005). ArticleCASPubMed Google Scholar
Liu, L. et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res.66, 11851–11858 (2006). ArticleCASPubMed Google Scholar
Noske, A. et al. Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncol. Rep.20, 1409–1417 (2008). CASPubMed Google Scholar
Fan, S. et al. Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol. Ther.8, 1463–1469 (2009). ArticlePubMed Google Scholar
Coleman, L. J. et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br. J. Cancer100, 1393–1399 (2009). ArticleCASPubMedPubMed Central Google Scholar
Salehi, Z. & Mashayekhi, F. Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin. Biochem.39, 404–409 (2006). ArticleCASPubMed Google Scholar
Braunstein, S. et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol. Cell28, 501–512 (2007). This study showed that most LABCs overexpress eIF4G1 and 4E-BP1, which was shown in animal models to comprise a hypoxia-activated switch that stimulates IRES-dependent translation of survival, angiogenesis and hypoxia-orchestrating mRNAs, promoting development of locally advanced tumours. ArticleCASPubMed Google Scholar
Fukuchi-Shimogori, T. et al. Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res.57, 5041–5044 (1997). CASPubMed Google Scholar
Comtesse, N. et al. Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26–27 in squamous cell carcinoma of the lung. Int. J. Cancer120, 2538–2544 (2007). ArticleCASPubMed Google Scholar
Bauer, C. et al. Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer92, 822–829 (2001). ArticleCASPubMed Google Scholar
Rosenwald, I. B., Hutzler, M. J., Wang, S., Savas, L. & Fraire, A. E. Expression of eukaryotic translation initiation factors 4E and 2α is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer92, 2164–2171 (2001). ArticleCASPubMed Google Scholar
Silvera, D. et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Naure Cell Biol.11, 903–908 (2009). This paper showed that overexpression of eIF4G1 occurs in IBC and is crucial for disease development. High levels of eIF4G1 promoted IRES-dependent translation ofP120CTNand formation of metastatic emboli. CAS Google Scholar
Silvera, D. & Schneider, R. J. Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle8, 3091–3096 (2009). ArticleCASPubMed Google Scholar
Shuda, M. et al. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res.20, 2489–2494 (2000). CASPubMed Google Scholar
Eberle, J., Krasagakis, K. & Orfanos, C. E. Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int. J. Cancer71, 396–401 (1997). ArticleCASPubMed Google Scholar
Bordeleau, M. E. et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest.118, 2651–2660 (2008). This study used small-molecule library screening to identify a specific inhibitor of eIF4A (silvestrol), demonstrating that initiation factors could be targeted for anticancer therapy. Silvestrol enhanced chemosensitivity in a mouse lymphoma model. CASPubMedPubMed Central Google Scholar
Lankat-Buttgereit, B. & Goke, R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol. Cell101, 309–317 (2009). ArticleCASPubMed Google Scholar
Yang, H. S. et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol.23, 26–37 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
LaRonde-LeBlanc, N., Santhanam, A. N., Baker, A. R., Wlodawer, A. & Colburn, N. H. Structural basis for inhibition of translation by the tumor suppressor Pdcd4. Mol. Cell. Biol.27, 147–156 (2007). ArticleCASPubMed Google Scholar
Holcik, M. Targeting translation for treatment of cancer—a novel role for IRES? Curr. Cancer Drug Targets.4, 299–311 (2004). ArticleCASPubMed Google Scholar
Jopling, C. L. & Willis, A. E. N. -myc translation is initiated via an internal ribosome entry segment that displays enhanced activity in neuronal cells. Oncogene20, 2664–26670 (2001). ArticleCASPubMed Google Scholar
Spriggs, K. A. et al. Canonical initiation factor requirements of the Myc family of internal ribosome entry segments. Mol. Cell. Biol.29, 1565–1574 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chappell, S. A. et al. A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation. Oncogene19, 4437–4440 (2000). ArticleCASPubMed Google Scholar
Evans, J. R. et al. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene22, 8012–8020 (2003). ArticlePubMedCAS Google Scholar
Shi, Y. et al. IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res.68, 10215–10222 (2008). ArticleCASPubMedPubMed Central Google Scholar
Holcik, M., Yeh, C., Korneluk, R. G. & Chow, T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene19, 4174–4177 (2000). ArticleCASPubMed Google Scholar
Desplanques, G. et al. Impact of XIAP protein levels on the survival of myeloma cells. Haematologica94, 87–93 (2009). ArticleCASPubMed Google Scholar
Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer9, 550–562 (2009). ArticleCAS Google Scholar
Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell. Biol.10, 307–318 (2009). ArticleCAS Google Scholar
Waskiewicz, A. J., Flynn, A., Proud, C. G. & Cooper, J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J.16, 1909–1920 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pyronnet, S. et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J.18, 270–279 (1999). This study demonstrated that MNK1 is part of the eIF4F complex, resides on initiation factor eIF4G and phosphorylates eIF4E after assembly of eIF4F to promote translation initiation. ArticleCASPubMedPubMed Central Google Scholar
Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell12, 9–22 (2007). ArticleCASPubMed Google Scholar
Lin, C. J., Malina, A. & Pelletier, J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res.69, 7491–7494 (2009). ArticleCASPubMed Google Scholar
Mavrakis, K. J. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev.22, 2178–2188 (2008). This study demonstrated that RHEB, an activator of mTOR in the mTORC1 complex, promotes lymphoma in PTEN-deficient mice and requires eIF4E as an effector. ArticleCASPubMedPubMed Central Google Scholar
Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E. & Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA95, 15587–15591 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin. Cancer Res.10, 6779–6788 (2004). ArticleCASPubMed Google Scholar
Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer3, 179–192 (2003). ArticleCAS Google Scholar
Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell123, 569–580 (2005). ArticleCASPubMed Google Scholar
Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science314, 467–471 (2006). This paper showed that eIF4A is a target of the tumour suppressor PDCD4. In response to mitogens, S6K1 phosphorylates PDCD4, which is then rapidly degraded in the proteasome, releasing eIF4A activity and promoting translation. ArticleCASPubMed Google Scholar
Carayol, N. et al. Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J. Biol. Chem.283, 8601–8610 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shahbazian, D. et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J.25, 2781–2791 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maira, S. M., Stauffer, F., Schnell, C. & Garcia-Echeverria, C. PI3K inhibitors for cancer treatment: where do we stand? Biochem. Soc. Trans.37, 265–272 (2009). ArticleCASPubMed Google Scholar
Choo, A. Y. & Blenis, J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle8, 567–572 (2009). ArticleCASPubMed Google Scholar
Yu, K. et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res.70, 621–631 (2010). ArticleCASPubMed Google Scholar
Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7, e38 (2009). ArticlePubMedCAS Google Scholar
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem.284, 8023–8032 (2009). ArticleCASPubMedPubMed Central Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). This study demonstrated that a primary mechanism for downregulation of mTOR is through the upstream TSC1 and TSC2 and that TSC2 is inhibited by activated Akt. ArticleCASPubMed Google Scholar
Avruch, J. et al. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans.37, 223–226 (2009). ArticleCASPubMed Google Scholar
Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol.9, 316–323 (2007). ArticleCASPubMed Google Scholar
Madhunapantula, S. V., Sharma, A. & Robertson, G. P. PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res.67, 3626–3636 (2007). ArticleCASPubMed Google Scholar
Johnson, M. D., O'Connell, M., Vito, F. & Bakos, R. S. Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas. J. Neurooncol.92, 129–136 (2009). ArticleCASPubMed Google Scholar
Kwiatkowski, D. J. Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet.67, 87–96 (2003). ArticleCASPubMed Google Scholar
Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell134, 451–460 (2008). ArticleCASPubMedPubMed Central Google Scholar
Braunstein, S., Badura, M. L., Xi, Q., Formenti, S. C. & Schneider, R. J. Regulation of protein synthesis by ionizing radiation. Mol. Cell. Biol.29, 5645–5656 (2009). ArticleCASPubMedPubMed Central Google Scholar
Haines, G. K. 3rd. et al. Expression of the double-stranded RNA-dependent protein kinase (p68) in squamous cell carcinoma of the head and neck region. Arch. Otolaryngol. Head Neck Surg.119, 1142–1147 (1993). ArticlePubMed Google Scholar
Haines, G. K. et al. Correlation of the expression of double-stranded RNA-dependent protein kinase (p68) with differentiation in head and neck squamous cell carcinoma. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.63, 289–295 (1993). ArticleCASPubMed Google Scholar
Haines, G. K. 3rd. et al. Interferon-responsive protein kinase (p68) and proliferating cell nuclear antigen are inversely distributed in head and neck squamous cell carcinoma. Tumour Biol.19, 52–59 (1998). ArticlePubMed Google Scholar
Terada, T., Maeta, H., Endo, K. & Ohta, T. Protein expression of double-stranded RNA-activated protein kinase in thyroid carcinomas: correlations with histologic types, pathologic parameters, and Ki-67 labeling. Hum. Pathol.31, 817–821 (2000). ArticleCASPubMed Google Scholar
Kim, S. H., Forman, A. P., Mathews, M. B. & Gunnery, S. Human breast cancer cells contain elevated levels and activity of the protein kinase, PKR. Oncogene19, 3086–3094 (2000). ArticleCASPubMed Google Scholar
Haines, G. K. et al. Expression of the double-stranded RNA-dependent protein kinase (p68) in human breast tissues. Tumour Biol.17, 5–12 (1996). ArticleCASPubMed Google Scholar
Shimada, A. et al. Aberrant expression of double-stranded RNA-dependent protein kinase in hepatocytes of chronic hepatitis and differentiated hepatocellular carcinoma. Cancer Res.58, 4434–4438 (1998). CASPubMed Google Scholar
Rosenwald, I. B., Wang, S., Savas, L., Woda, B. & Pullman, J. Expression of translation initiation factor eIF-2α is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer98, 1080–1088 (2003). ArticleCASPubMed Google Scholar
Wang, S. et al. Expression of eukaryotic translation initiation factors 4E and 2α correlates with the progression of thyroid carcinoma. Thyroid11, 1101–1107 (2001). ArticleCASPubMed Google Scholar
Wang, S. et al. Expression of the eukaryotic translation initiation factors 4E and 2α in non-Hodgkin's lymphomas. Am. J. Pathol.155, 247–255 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rosenwald, I. B. et al. Expression of the translation initiation factors eIF-4E and eIF-2* is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum. Pathol.39, 910–916 (2008). ArticleCASPubMed Google Scholar
Bachmann, F., Banziger, R. & Burger, M. M. Cloning of a novel protein overexpressed in human mammary carcinoma. Cancer Res.57, 988–994 (1997). CASPubMed Google Scholar
Dellas, A. et al. Expression of p150 in cervical neoplasia and its potential value in predicting survival. Cancer83, 1376–1383 (1998). ArticleCASPubMed Google Scholar
Pincheira, R., Chen, Q. & Zhang, J. T. Identification of a 170-kDa protein over-expressed in lung cancers. Br. J. Cancer84, 1520–1527 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chen, G. & Burger, M. M. p150 expression and its prognostic value in squamous-cell carcinoma of the esophagus. Int. J. Cancer84, 95–100 (1999). Google Scholar
Chen, G. & Burger, M. M. p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation. Int. J. Cancer112, 393–398 (2004). ArticleCASPubMed Google Scholar
Rothe, M., Ko, Y., Albers, P. & Wernert, N. Eukaryotic initiation factor 3 p110 mRNA is overexpressed in testicular seminomas. Am. J. Pathol.157, 1597–1604 (2000). ArticleCASPubMedPubMed Central Google Scholar
Guan, X. Y. et al. Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer Res.61, 3806–3809 (2001). CASPubMed Google Scholar
Xie, D. et al. Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Hum. Pathol.39, 80–86 (2008). ArticleCASPubMed Google Scholar
Luo, J. H. et al. Overexpression of EIF-5A2 predicts tumor recurrence and progression in pTa/pT1 urothelial carcinoma of the bladder. Cancer Sci.100, 896–902 (2009). ArticleCASPubMed Google Scholar
Chen, W. et al. Overexpression of EIF-5A2 is an independent predictor of outcome in patients of urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Epidemiol. Biomarkers Prev.18, 400–408 (2009). ArticleCASPubMed Google Scholar
De Benedetti, A. & Graff, J. R. eIF-4E expression and its role in malignancies and metastases. Oncogene23, 3189–3199 (2004). ArticleCASPubMed Google Scholar
Thumma, S. C. & Kratzke, R. A. Translational control: a target for cancer therapy. Cancer Lett.258, 1–8 (2007). ArticleCASPubMed Google Scholar
Bauer, C. et al. Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int. J. Cancer98, 181–185 (2002). ArticleCASPubMed Google Scholar
Brass, N. et al. Translation initiation factor eIF-4γ is encoded by an amplified gene and induces an immune response in squamous cell lung carcinoma. Hum. Mol. Genet.6, 33–39 (1997). ArticleCASPubMed Google Scholar
Konicek, B. W., Dumstorf, C. A. & Graff, J. R. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle7, 2466–2471 (2008). ArticleCASPubMed Google Scholar
Moerke, N. J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell128, 257–267 (2007). ArticleCASPubMed Google Scholar
Tamburini, J. et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood114, 1618–1627 (2009). ArticleCASPubMed Google Scholar
Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nature Rev. Drug Discov.5, 671–688 (2006). ArticleCAS Google Scholar