Implications and challenges of connexin connections to cancer (original) (raw)
Loewenstein, W. R. & Kanno, Y. Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature209, 1248–1249 (1966). ArticleCASPubMed Google Scholar
Goodenough, D. A. & Paul, D. L. Gap junctions. Cold Spring Harbor Perspect. Biol.1, a002576 (2009). Article Google Scholar
Herve, J. C. Gap junction channels: from protein genes to diseases. Prog. Biophys. Mol. Biol.94, 1–4 (2007). ArticleCASPubMed Google Scholar
Mesnil, M., Crespin, S., Avanzo, J. L. & Zaidan-Dagli, M. L. Defective gap junctional intercellular communication in the carcinogenic process. Biochim. Biophys. Acta1719, 125–145 (2005). ArticleCASPubMed Google Scholar
Cronier, L., Crespin, S., Strale, P. O., Defamie, N. & Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox Signal.11, 323–338 (2009). ArticleCASPubMed Google Scholar
Laird, D. W. et al. Deficiency of connexin 43 gap junctions is an independent marker for breast tumors. Cancer Res.59, 4104–4110 (1999). CASPubMed Google Scholar
Naus, C. C., Goldberg, G. S., Sin, W. C. & Winterhager, E. in Gap Junctions in Development and Disease 253–273 (Springer-Verlag Heidelberg, 2005). Book Google Scholar
Azarnia, R. & Loewenstein, W. R. Intercellular communication and the control of growth: XII. Alteration of junctional permeability by simian virus 40. Roles of the large and small T antigens. J. Membr. Biol.82, 213–220 (1984). ArticleCASPubMed Google Scholar
Azarnia, R. & Loewenstein, W. R. Intercellular communication and the control of growth: XI. Alteration of junctional permeability by the src gene in a revertant cell with normal cytoskeleton. J. Membr. Biol.82, 207–212 (1984). ArticleCASPubMed Google Scholar
Azarnia, R. & Loewenstein, W. R. Intercellular communication and the control of growth: X. Alteration of junctional permeability by the src gene. A study with temperature-sensitive mutant Rous sarcoma virus. J. Membr. Biol.82, 191–205 (1984). ArticleCASPubMed Google Scholar
Lampe, P. D. Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J. Cell Biol.127, 1895–1905 (1994). ArticleCASPubMed Google Scholar
Trosko, J. E., Chang, C. C., Madhukar, B. V. & Klaunig, J. E. Chemical, oncogene and growth factor inhibition gap junctional intercellular communication: an integrative hypothesis of carcinogenesis. Pathobiology58, 265–278 (1990). ArticleCASPubMed Google Scholar
Atkinson, M. M., Menko, A. S., Johnson, R. G., Sheppard, J. R. & Sheridan, J. D. Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus. J. Cell Biol.91, 573–578 (1981). ArticleCASPubMed Google Scholar
Lee, S. W., Tomasetto, C. & Sager, R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc. Natl Acad. Sci. USA88, 2825–2829 (1991). ArticleCASPubMedPubMed Central Google Scholar
Shao, Q., Wang, H., McLachlan, E., Veitch, G. I. & Laird, D. W. Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res.65, 2705–2711 (2005). ArticleCASPubMed Google Scholar
Eghbali, B., Kessler, J. A., Reid, L. M., Roy, C. & Spray, D. C. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc. Natl Acad. Sci. USA88, 10701–10705 (1991). ArticleCASPubMedPubMed Central Google Scholar
Loewenstein, W. R. & Rose, B. The cell-cell channel in the control of growth. Semin. Cell Biol.3, 59–79 (1992). ArticleCASPubMed Google Scholar
Zhu, D., Caveney, S., Kidder, G. M. & Naus, C. C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl Acad. Sci. USA88, 1883–1887 (1991). ArticleCASPubMedPubMed Central Google Scholar
McLachlan, E., Shao, Q., Wang, H. L., Langlois, S. & Laird, D. W. Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res.66, 9886–9894 (2006). ArticleCASPubMed Google Scholar
Hellmann, P. et al. Transfection with different connexin genes alters growth and differentiation of human choriocarcinoma cells. Exp. Cell Res.246, 480–490 (1999). ArticleCASPubMed Google Scholar
Hirschi, K. K., Xu, C. E., Tsukamoto, T. & Sager, R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ.7, 861–870 (1996). CASPubMed Google Scholar
Temme, A. et al. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr. Biol.7, 713–716 (1997). ArticleCASPubMed Google Scholar
King, T. J. & Lampe, P. D. The gap junction protein connexin32 is a mouse lung tumor suppressor. Cancer Res.64, 7191–7196 (2004). ArticleCASPubMed Google Scholar
King, T. J. & Lampe, P. D. Mice deficient for the gap junction protein connexin 32 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-activated protein kinase (p44/Erk1, p42/Erk2) activation. Carcinogenesis25, 669–680 (2004). ArticleCASPubMed Google Scholar
Avanzo, J. L. et al. Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis25, 1973–1982 (2004). ArticleCASPubMed Google Scholar
Dagli, M. L., Yamasaki, H., Krutovskikh, V. & Omori, Y. Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin 32 only in the liver. Carcinogenesis25, 483–492 (2004). ArticleCASPubMed Google Scholar
Bertram, J. S. & Vine, A. L. Cancer prevention by retinoids and carotenoids: independent action on a common target. Biochim. Biophys. Acta1740, 170–178 (2005). ArticleCASPubMed Google Scholar
Bertram, J. S. Inhibition of chemically induced neoplastic transformation by carotenoids. Mechanistic studies. Ann. N. Y. Acad. Sci.686, 161–176 (1993). ArticleCASPubMed Google Scholar
Rogers, M. et al. Retinoid-enhanced gap junctional communication is achieved by increased levels of connexin 43 mRNA and protein. Mol. Carcinog.3, 335–343 (1990). ArticleCASPubMed Google Scholar
Janssen-Timmen, U., Traub, O., Dermietzel, R., Rabes, H. M. & Willecke, K. Reduced number of gap junctions in rat hepatocarcinomas detected by monoclonal antibody. Carcinogenesis7, 1475–1482 (1986). ArticleCASPubMed Google Scholar
Dobrowolski, R. et al. The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum. Mol. Genet.17, 539–554 (2008). ArticleCASPubMed Google Scholar
Li, Q. et al. Cytoplasmic accumulation of connexin 32 protein enhances motility and metastatic ability of human hepatoma cells in vitro and in vivo. Int. J. Cancer121, 536–546 (2007). ArticleCASPubMed Google Scholar
el-Sabban, M. E. & Pauli, B. U. Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J. Cell Biol.115, 1375–1382 (1991). ArticleCASPubMed Google Scholar
Ezumi, K. et al. Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer. Clin. Cancer Res.14, 677–684 (2008). ArticleCASPubMed Google Scholar
Ito, A. et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest.105, 1189–1197 (2000). ArticleCASPubMedPubMed Central Google Scholar
Elzarrad, M. K. et al. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med.6, 20 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Lin, J. H. et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J. Neurosci.22, 4302–4311 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature461, 809–813 (2009). ArticleCASPubMed Google Scholar
Goldberg, G. S., Lampe, P. D. & Nicholson, B. J. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nature Cell Biol.1, 457–459 (1999). ArticleCASPubMed Google Scholar
Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. & Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science322, 1551–1555 (2008). ArticleCASPubMed Google Scholar
Glick, A. B. & Yuspa, S. H. Tissue homeostasis and the control of the neoplastic phenotype in epithelial cancers. Semin. Cancer Biol.15, 75–83 (2005). ArticleCASPubMed Google Scholar
Balendiran, G. K., Dabur, R. & Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct.22, 343–352 (2004). ArticleCASPubMed Google Scholar
Prise, K. M. & O'Sullivan, J. M. Radiation-induced bystander signalling in cancer therapy. Nature Rev. Cancer9, 351–360 (2009). ArticleCAS Google Scholar
Andrade-Rozental, A. F. et al. Gap junctions: the “kiss of death” and the “kiss of life”. Brain Res. Brain Res. Rev.32, 308–315 (2000). ArticleCASPubMed Google Scholar
Mesnil, M. & Yamasaki, H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res.60, 3989–3999 (2000). CASPubMed Google Scholar
Goodenough, D. A. & Paul, D. L. Beyond the gap: functions of unpaired connexon channels. Nature Rev. Mol. Cell Biol.4, 285–294 (2003). ArticleCAS Google Scholar
Spray, D. C., Ye, Z. C. & Ransom, B. R. Functional connexin “hemichannels”: a critical appraisal. Glia54, 758–773 (2006). ArticlePubMed Google Scholar
Jiang, J. X. & Gu, S. Gap junction- and hemichannel-independent actions of connexins. Biochim. Biophys. Acta1711, 208–214 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. W., Kaneda, M. & Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem.278, 44852–44856 (2003). ArticleCASPubMed Google Scholar
Duflot-Dancer, A., Mesnil, M. & Yamasaki, H. Dominant-negative abrogation of connexin-mediated cell growth control by mutant connexin genes. Oncogene15, 2151–2158 (1997). ArticleCASPubMed Google Scholar
Huang, R. P. et al. Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res.58, 5089–5096 (1998). CASPubMed Google Scholar
Krutovskikh, V. A. et al. Differential effect of subcellular localization of communication impairing gap junction protein connexin 43 on tumor cell growth in vivo. Oncogene19, 505–513 (2000). ArticleCASPubMed Google Scholar
Lee, H. J., Lee, I. K., Seul, K. H. & Rhee, S. K. Growth inhibition by connexin 26 expression in cultured rodent tumor cells. Mol. Cells14, 136–142 (2002). CASPubMed Google Scholar
Omori, Y. & Yamasaki, H. Mutated connexin43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin 43 in a dominant-negative manner. Int. J. Cancer78, 446–453 (1998). ArticleCASPubMed Google Scholar
Laird, D. W. The gap junction proteome and its relationship to disease. Trends Cell Biol.20, 92–101 (2010). ArticleCASPubMed Google Scholar
Langlois, S., Cowan, K. N., Shao, Q., Cowan, B. J. & Laird, D. W. Caveolin-1 and -2 interact with connexin 43 and regulate gap junctional intercellular communication in keratinocytes. Mol. Biol. Cell19, 912–928 (2008). ArticleCASPubMedPubMed Central Google Scholar
Langlois, S., Cowan, K. N., Shao, Q., Cowan, B. J. & Laird, D. W. The tumor suppressive function of connexin 43 in keratinocytes is mediated in part via interaction with caveolin-1. Cancer Res. 20 April 2010 [epub ahead of print].
Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol.162, 2029–2039 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goetz, J. G., Lajoie, P., Wiseman, S. M. & Nabi, I. R. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev.27, 715–735 (2008). ArticleCASPubMed Google Scholar
Fu, C. T., Bechberger, J. F., Ozog, M. A., Perbal, B. & Naus, C. C. CCN3 (NOV) interacts with connexin 43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J. Biol. Chem.279, 36943–36950 (2004). ArticleCASPubMed Google Scholar
Gellhaus, A. et al. Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J. Biol. Chem.279, 36931–36942 (2004). ArticleCASPubMed Google Scholar
Leithe, E. et al. Ubiquitylation of the gap junction protein connexin-43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. J. Cell Sci.122, 3883–3893 (2009). ArticleCASPubMed Google Scholar
Kieken, F. et al. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ. Res.104, 1103–1112 (2009). ArticleCASPubMedPubMed Central Google Scholar
Oh, H. et al. Negative regulation of cell growth and differentiation by TSG101 through association with p21(Cip1/WAF1). Proc. Natl Acad. Sci. USA99, 5430–5435 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fujimoto, E. et al. Inhibition of Src activity enhances the tumor-suppressive effect of the connexin 32 gene in Caki-1 renal cancer cells. Oncol. Rep.15, 1359–1365 (2006). CASPubMed Google Scholar
Fujimoto, E. et al. Connexin32 as a tumor suppressor gene in a metastatic renal cell carcinoma cell line. Oncogene24, 3684–3690 (2005). ArticleCASPubMed Google Scholar
Elias, L. A., Wang, D. D. & Kriegstein, A. R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature448, 901–907 (2007). ArticleCASPubMed Google Scholar
Cina, C. et al. Involvement of the cytoplasmic C-terminal domain of connexin 43 in neuronal migration. J. Neurosci.29, 2009–2021 (2009). ArticleCASPubMedPubMed Central Google Scholar
Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol.119, 179–189 (1992). ArticleCASPubMed Google Scholar
Musil, L. S., Cunningham, B. A., Edelman, G. M. & Goodenough, D. A. Differential phosphorylation of the gap junction protein connexin 43 in junctional communication-competent and -deficient cell lines. J. Cell Biol.111, 2077–2088 (1990). ArticleCASPubMed Google Scholar
Wei, C. J., Francis, R., Xu, X. & Lo, C. W. Connexin 43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J. Biol. Chem.280, 19925–19936 (2005). ArticleCASPubMed Google Scholar
Reaume, A. G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science267, 1831–1834 (1995). ArticleCASPubMed Google Scholar
Xu, X., Francis, R., Wei, C. J., Linask, K. L. & Lo, C. W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development133, 3629–3639 (2006). ArticleCASPubMed Google Scholar
Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol.10, 1027–1038 (2008). ArticleCASPubMed Google Scholar
Olk, S. et al. Proteomic analysis of astroglial connexin 43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia58, 494–505.
Lampe, P. D. et al. Cellular interaction of integrin a3b1 with laminin 5 promotes gap junctional communication. J. Cell Biol.143, 1735–1747 (1998). ArticleCASPubMedPubMed Central Google Scholar
Burt, J. M., Nelson, T. K., Simon, A. M. & Fang, J. S. Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am. J. Physiol. Cell Physiol.295, C1103–C1112 (2008). ArticleCASPubMedPubMed Central Google Scholar
Solan, J. L., Fry, M. D., TenBroek, E. M. & Lampe, P. D. Connexin 43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J. Cell Sci.116, 2203–2211 (2003). ArticleCASPubMed Google Scholar
Chen, S. C., Pelletier, D. B., Ao, P. & Boynton, A. L. Connexin 43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ.6, 681–690 (1995). CASPubMed Google Scholar
Zhang, Y. W., Morita, I., Ikeda, M., Ma, K. W. & Murota, S. Connexin 43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene20, 4138–4149 (2001). ArticleCASPubMed Google Scholar
Sanchez-Alvarez, R., Paino, T., Herrero-Gonzalez, S., Medina, J. M. & Tabernero, A. Tolbutamide reduces glioma cell proliferation by increasing connexin43, which promotes the up-regulation of p21 and p27 and subsequent changes in retinoblastoma phosphorylation. Glia54, 125–134 (2006). ArticlePubMed Google Scholar
Tanaka, M. & Grossman, H. B. Connexin 26 induces growth suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol. Rep.11, 537–541 (2004). CASPubMed Google Scholar
Mesnil, M. et al. Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res.55, 629–639 (1995). CASPubMed Google Scholar
Iacobas, D. A., Scemes, E. & Spray, D. C. Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem. Int.45, 243–250 (2004). ArticleCASPubMed Google Scholar
Saito-Katsuragi, M. et al. Role for connexin 26 in metastasis of human malignant melanoma: communication between melanoma and endothelial cells via connexin 26. Cancer110, 1162–1172 (2007). ArticleCASPubMed Google Scholar
Pollmann, M. A., Shao, Q., Laird, D. W. & Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res.7, R522–R534 (2005). ArticleCASPubMedPubMed Central Google Scholar
Naoi, Y. et al. Connexin 26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res. Treat106, 11–17 (2007). ArticleCASPubMed Google Scholar
Yano, T. et al. Connexin 32 as an anti-invasive and anti-metastatic gene in renal cell carcinoma. Biol. Pharm. Bull.29, 1991–1994 (2006). ArticleCASPubMed Google Scholar
Li, Z., Zhou, Z. & Donahue, H. J. Alterations in Cx43 and OB-cadherin affect breast cancer cell metastatic potential. Clin. Exp. Metastasis25, 265–272 (2008). ArticleCASPubMed Google Scholar
Sato, H. et al. The inhibitory effect of connexin 32 gene on metastasis in renal cell carcinoma. Mol. Carcinog.47, 403–409 (2008). ArticlePubMedCAS Google Scholar
Cohn, E. S. & Kelley, P. M. Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am. J. Med. Genet.89, 130–136 (1999). ArticleCASPubMed Google Scholar
Nyquist, G. G. et al. Malignant proliferating pilar tumors arising in KID syndrome: a report of two patients. Am. J. Med. Genet. A143, 734–741 (2007). Article Google Scholar
Collignon, F. et al. Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans. J. Neurosurg.105, 77–87 (2006). ArticleCASPubMed Google Scholar
Proulx, E. et al. Functional contribution of specific brain areas to absence seizures: role of thalamic gap-junctional coupling. Eur. J. Neurosci.23, 489–496 (2006). ArticlePubMed Google Scholar
Nemani, V. M. & Binder, D. K. Emerging role of gap junctions in epilepsy. Histol. Histopathol.20, 253–259 (2005). CASPubMed Google Scholar
Gabriel, H. D. et al. Transplacental uptake of glucose is decreased in embryonic lethal connexin 26-deficient mice. J. Cell Biol.140, 1453–1461 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kruger, O. et al. Defective vascular development in connexin 45-deficient mice. Development127, 4179–4193 (2000). CASPubMed Google Scholar
Yamakage, K., Omori, Y., Zaidan-Dagli, M. L., Cros, M. P. & Yamasaki, H. Induction of skin papillomas, carcinomas, and sarcomas in mice in which the connexin 43 gene is heterologously deleted. J. Invest. Dermatol.114, 289–294 (2000). ArticleCASPubMed Google Scholar
Evert, M., Ott, T., Temme, A., Willecke, K. & Dombrowski, F. Morphology and morphometric investigation of hepatocellular preneoplastic lesions and neoplasms in connexin 32-deficient mice. Carcinogenesis23, 697–703 (2002). ArticleCASPubMed Google Scholar
Moennikes, O., Buchmann, A., Ott, T., Willecke, K. & Schwarz, M. The effect of connexin 32 null mutation on hepatocarcinogenesis in different mouse strains. Carcinogenesis20, 1379–1382 (1999). ArticleCASPubMed Google Scholar
Moennikes, O., Buchmann, A., Willecke, K., Traub, O. & Schwarz, M. Hepatocarcinogenesis in female mice with mosaic expression of connexin 32. Hepatology32, 501–506 (2000). ArticleCASPubMed Google Scholar
King, T. J. et al. Deficiency in the gap junction protein connexin 32 alters p27Kip1 tumor suppression and MAPK activation in a tissue-specific manner. Oncogene24, 1718–1726 (2005). ArticleCASPubMed Google Scholar
Bakirtzis, G. et al. Targeted epidermal expression of mutant connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum. Mol. Genet.12, 1737–1744 (2003). ArticleCASPubMed Google Scholar
Flenniken, A. M. et al. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development132, 4375–4386 (2005). ArticleCASPubMed Google Scholar
Kalcheva, N. et al. Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc. Natl Acad. Sci. USA104, 20512–20516 (2007). ArticleCASPubMedPubMed Central Google Scholar
VanSlyke, J. K. & Musil, L. S. Dislocation and degradation from the ER are regulated by cytosolic stress. J. Cell Biol.157, 381–394 (2002). ArticleCASPubMedPubMed Central Google Scholar
Musil, L. S. & Goodenough, D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin 43, occurs after exit from the ER. Cell74, 1065–1077 (1993). ArticleCASPubMed Google Scholar
Giepmans, B. N. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol.11, 1364–1368 (2001). ArticleCASPubMed Google Scholar
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell128, 547–560 (2007). ArticleCASPubMedPubMed Central Google Scholar
Preus, D., Johnson, R., Sheridan, J. & Meyer, R. Analysis of gap junctions and formation plaques between reaggregating Novikoff hepatoma cells. J. Ultrastruct. Res.77, 263–276 (1981). ArticleCASPubMed Google Scholar
Evans, W. H., De Vuyst, E. & Leybaert, L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem. J.397, 1–14 (2006). ArticleCASPubMedPubMed Central Google Scholar
McLachlan, E., Shao, Q. & Laird, D. W. Connexins and gap junctions in mammary gland development and breast cancer progression. J. Membr. Biol.218, 107–121 (2007). ArticleCASPubMed Google Scholar