Programmed cell removal: a new obstacle in the road to developing cancer (original) (raw)
Cotter, T. G. Apoptosis and cancer: the genesis of a research field. Nature Rev. Cancer9, 501–507 (2009). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Lagasse, E. & Weissman, I. L. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med.179, 1047–1052 (1994). ArticleCASPubMed Google Scholar
Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol.223, 177–194 (2011). ArticleCASPubMed Google Scholar
Lauber, K., Blumenthal, S. G., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell14, 277–287 (2004). ArticleCASPubMed Google Scholar
Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood112, 5026–5036 (2008). ArticleCASPubMed Google Scholar
Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell113, 717–730 (2003). ArticleCASPubMed Google Scholar
Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature461, 282–286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature467, 863–867 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol.7, 964–974 (2007). ArticleCAS Google Scholar
Bournazou, I. et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest.119, 20–32 (2009). CASPubMed Google Scholar
Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol.189, 1059–1070 (2010). ArticleCASPubMedPubMed Central Google Scholar
Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol.2, 965–975 (2002). ArticleCAS Google Scholar
Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med.207, 1807–1817 (2010). ArticleCASPubMedPubMed Central Google Scholar
Devitt, A. & Marshall, L. J. The innate immune system and the clearance of apoptotic cells. J. Leukoc. Biol.90, 447–457 (2011). ArticleCASPubMed Google Scholar
Dini, L., Autuori, F., Lentini, A., Oliverio, S. & Piacentini, M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett.296, 174–178 (1992). ArticleCASPubMed Google Scholar
Watanabe, Y., Shiratsuchi, A., Shimizu, K., Takizawa, T. & Nakanishi, Y. Role of phosphatidylserine exposure and sugar chain desialylation at the surface of influenza virus-infected cells in efficient phagocytosis by macrophages. J. Biol. Chem.277, 18222–18228 (2002). ArticleCASPubMed Google Scholar
Shiratsuchi, A., Watanabe, I., Ju, J. S., Lee, B. L. & Nakanishi, Y. Bridging effect of recombinant human mannose-binding lectin in macrophage phagocytosis of Escherichia coli. Immunology124, 575–583 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mevorach, D., Mascarenhas, J. O., Gershov, D. & Elkon, K. B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med.188, 2313–2320 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ogden, C. A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med.194, 781–795 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ.5, 551–562 (1998). ArticleCASPubMed Google Scholar
Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature407, 784–788 (2000). ArticleCASPubMed Google Scholar
Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol.11, R795–R805 (2001). ArticleCASPubMed Google Scholar
Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell4, 587–598 (2003). ArticleCASPubMed Google Scholar
Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell123, 321–334 (2005). ArticleCASPubMed Google Scholar
Fadok, V. A. et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol.149, 4029–4035 (1992). CASPubMed Google Scholar
Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature418, 200–203 (2002). ArticleCASPubMed Google Scholar
Knepper-Nicolai, B., Savill, J. & Brown, S. B. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J. Biol. Chem.273, 30530–30536 (1998). ArticleCASPubMed Google Scholar
Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol.23, 285–290 (2002). ArticleCASPubMed Google Scholar
Kawasaki, B. T. & Farrar, W. L. Cancer stem cells, CD200 and immunoevasion. Trends Immunol.29, 464–468 (2008). ArticleCASPubMed Google Scholar
Koning, N., Swaab, D. F., Hoek, R. M. & Huitinga, I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J. Neuropathol. Exp. Neurol.68, 159–167 (2009). ArticleCASPubMed Google Scholar
Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science290, 1768–1771 (2000). ArticleCASPubMed Google Scholar
Copland, D. A. et al. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am. J. Pathol.171, 580–588 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bajou, K. et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell14, 324–334 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. C., Duszczyszyn, D. A., Castellino, F. J. & Ploplis, V. A. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am. J. Pathol.159, 1681–1688 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fay, W. P., Garg, N. & Sunkar, M. Vascular functions of the plasminogen activation system. Arterioscler. Thromb. Vasc. Biol.27, 1231–1237 (2007). ArticleCASPubMed Google Scholar
Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol.180, 989–1003 (2008). ArticleCASPubMedPubMed Central Google Scholar
Reinhold, M. I. et al. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci.108, 3419–3425 (1995). CASPubMed Google Scholar
Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science288, 2051–2054 (2000). ArticleCASPubMed Google Scholar
Blazar, B. R. et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med.194, 541–549 (2001). ArticleCASPubMedPubMed Central Google Scholar
Khandelwal, S., van Rooijen, N. & Saxena, R. K. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion47, 1725–1732 (2007). ArticlePubMed Google Scholar
Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest.90, 1513–1522 (1992). ArticleCASPubMedPubMed Central Google Scholar
Doyen, V. et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J. Exp. Med.198, 1277–1283 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, S. S., Liu, Z., Uzunel, M. & Sundqvist, K. G. Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood108, 3112–3120 (2006). ArticleCASPubMed Google Scholar
Li, S. S., Forslow, A. & Sundqvist, K. G. Autocrine regulation of T cell motility by calreticulin-thrombospondin-1 interaction. J. Immunol.174, 654–661 (2005). ArticleCASPubMed Google Scholar
Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood116, 625–627 (2010). ArticleCASPubMed Google Scholar
Ghiran, I., Klickstein, L. B. & Nicholson-Weller, A. Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J. Biol. Chem.278, 21024–21031 (2003). ArticleCASPubMed Google Scholar
Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell138, 286–299 (2009). ArticleCASPubMedPubMed Central Google Scholar
Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I. & Opas, M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J.417, 651–666 (2009). ArticleCASPubMed Google Scholar
Eggleton, P. & Llewellyn, D. H. Pathophysiological roles of calreticulin in autoimmune disease. Scand. J. Immunol.49, 466–473 (1999). ArticleCASPubMed Google Scholar
Mevorach, D., Zhou, J. L., Song, X. & Elkon, K. B. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med.188, 387–392 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kong, X. N. et al. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J. Exp. Med.204, 2719–2731 (2007). ArticleCASPubMedPubMed Central Google Scholar
Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med.13, 54–61 (2007). ArticleCASPubMed Google Scholar
Gaipl, U. S. et al. Defects in the disposal of dying cells lead to autoimmunity. Curr. Rheumatol. Rep.6, 401–407 (2004). ArticlePubMed Google Scholar
Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell138, 271–285 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell142, 699–713 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chao, M. P. et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res.71, 1374–1384 (2011). ArticleCASPubMed Google Scholar
Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA106, 14016–14021 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med.2, 63ra94 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lim, L. H. & Pervaiz, S. Annexin 1: the new face of an old molecule. FASEB J.21, 968–975 (2007). ArticleCASPubMed Google Scholar
Xia, S. H. et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas. Oncogene21, 6641–6648 (2002). ArticleCASPubMed Google Scholar
Xin, W., Rhodes, D. R., Ingold, C., Chinnaiyan, A. M. & Rubin, M. A. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am. J. Pathol.162, 255–261 (2003). ArticleCASPubMedPubMed Central Google Scholar
Connor, J., Bucana, C., Fidler, I. J. & Schroit, A. J. Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proc. Natl Acad. Sci. USA86, 3184–3188 (1989). ArticleCASPubMedPubMed Central Google Scholar
Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D. & Fidler, I. J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res.51, 3062–3066 (1991). CASPubMed Google Scholar
Rao, L. V., Tait, J. F. & Hoang, A. D. Binding of annexin V to a human ovarian carcinoma cell line (OC-2008). Contrasting effects on cell surface factor VIIa/tissue factor activity and prothrombinase activity. Thromb. Res.67, 517–531 (1992). ArticleCASPubMed Google Scholar
Woehlecke, H., Pohl, A., Alder-Baerens, N., Lage, H. & Herrmann, A. Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). Biochem. J.376, 489–495 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zwaal, R. F., Comfurius, P. & Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci.62, 971–988 (2005). ArticleCASPubMed Google Scholar
Dong, H. P. et al. Evaluation of cell surface expression of phosphatidylserine in ovarian carcinoma effusions using the annexin-V/7-AAD assay: clinical relevance and comparison with other apoptosis parameters. Am. J. Clin. Pathol.132, 756–762 (2009). ArticlePubMed Google Scholar
Clodi, K. et al. Cell-surface exposure of phosphatidylserine correlates with the stage of fludarabine-induced apoptosis in chronic lymphocytic leukemia and expression of apoptosis-regulating genes. Cytometry40, 19–25 (2000). ArticleCASPubMed Google Scholar
McWhirter, J. R. et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc. Natl Acad. Sci. USA103, 1041–1046 (2006). ArticleCASPubMedPubMed Central Google Scholar
Brunetti, L. et al. CD200/OX2, a cell surface molecule with immuno-regulatory function, is consistently expressed on hairy cell leukaemia neoplastic cells. Br. J. Haematol.145, 665–667 (2009). ArticleCASPubMed Google Scholar
Siva, A. et al. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol. Immunother.57, 987–996 (2008). ArticleCASPubMed Google Scholar
Moreaux, J. et al. CD200 is a new prognostic factor in multiple myeloma. Blood108, 4194–4197 (2006). ArticleCASPubMed Google Scholar
Tonks, A. et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia21, 566–568 (2007). ArticleCASPubMed Google Scholar
Petermann, K. B. et al. CD200 is induced by ERK and is a potential therapeutic target in melanoma. J. Clin. Invest.117, 3922–3929 (2007). CASPubMedPubMed Central Google Scholar
Moreaux, J., Veyrune, J. L., Reme, T., De Vos, J. & Klein, B. CD200: a putative therapeutic target in cancer. Biochem. Biophys. Res. Commun.366, 117–122 (2008). ArticleCASPubMed Google Scholar
Gorczynski, R. M., Chen, Z., Hu, J., Kai, Y. & Lei, J. Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin. Exp. Immunol.126, 220–229 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kretz-Rommel, A. et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J. Immunol.178, 5595–5605 (2007). ArticleCASPubMed Google Scholar
Stumpfova, M., Ratner, D., Desciak, E. B., Eliezri, Y. D. & Owens, D. M. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res.70, 2962–2972 (2010). ArticleCASPubMedPubMed Central Google Scholar
Poels, L. G. et al. Monoclonal antibody against human ovarian tumor-associated antigens. J. Natl Cancer Inst.76, 781–791 (1986). CASPubMed Google Scholar
Van Niekerk, C. C., Ramaekers, F. C., Hanselaar, A. G., Aldeweireldt, J. & Poels, L. G. Changes in expression of differentiation markers between normal ovarian cells and derived tumors. Am. J. Pathol.142, 157–177 (1993). CASPubMedPubMed Central Google Scholar
Rendtlew Danielsen, J. M., Knudsen, L. M., Dahl, I. M., Lodahl, M. & Rasmussen, T. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br. J. Haematol.138, 756–760 (2007). ArticlePubMedCAS Google Scholar
Mateo, V. et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nature Med.5, 1277–1284 (1999). ArticleCASPubMed Google Scholar
Mateo, V. et al. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood100, 2882–2890 (2002). ArticleCASPubMed Google Scholar
Saumet, A., Slimane, M. B., Lanotte, M., Lawler, J. & Dubernard, V. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells. Blood106, 658–667 (2005). ArticleCASPubMed Google Scholar
Maile, L. A. & Clemmons, D. R. Integrin-associated protein binding domain of thrombospondin-1 enhances insulin-like growth factor-I receptor signaling in vascular smooth muscle cells. Circ. Res.93, 925–931 (2003). ArticleCASPubMed Google Scholar
Gallagher, E. J. & LeRoith, D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol. Metab.21, 610–618 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xing, C., Arai, K., Park, K. P. & Lo, E. H. Induction of vascular endothelial growth factor and matrix metalloproteinase-9 via CD47 signaling in neurovascular cells. Neurochem. Res.35, 1092–1097 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kaur, S. et al. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J. Biol. Chem.285, 38923–38932 (2010). ArticleCASPubMedPubMed Central Google Scholar
Manna, P. P., Dimitry, J., Oldenborg, P. A. & Frazier, W. A. CD47 augments Fas/CD95-mediated apoptosis. J. Biol. Chem.280, 29637–29644 (2005). ArticleCASPubMed Google Scholar
Maxhimer, J. B. et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci. Transl. Med.1, 3ra7 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ.14, 1848–1850 (2007). ArticleCASPubMed Google Scholar
Mesaeli, N. & Phillipson, C. Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol. Biol. Cell15, 1862–1870 (2004). ArticleCASPubMedPubMed Central Google Scholar
Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol.7, 193–200 (1997).
Lwin, Z. M. et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod. Pathol.23, 1559–1566 (2010). ArticleCASPubMed Google Scholar
Chen, C. N. et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann. Surg. Oncol.16, 524–533 (2009). ArticleCASPubMed Google Scholar
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science253, 49–53 (1991). ArticleCASPubMed Google Scholar
Lee, A. S. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol.4, 267–273 (1992). ArticleCASPubMed Google Scholar
Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature Rev. Cancer4, 966–977 (2004). ArticleCAS Google Scholar
Panaretakis, T. et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ.15, 1499–1509 (2008). ArticleCASPubMed Google Scholar
Obeid, M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol.181, 2533–2543 (2008). ArticleCASPubMed Google Scholar
Strickland, D. K., Kounnas, M. Z. & Argraves, W. S. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J.9, 890–898 (1995). ArticleCASPubMed Google Scholar
Chen, J. S. et al. Secreted heat shock protein 90α induces colorectal cancer cell invasion through CD91/LRP-1 and NF-κB-mediated integrin αV expression. J. Biol. Chem.285, 25458–25466 (2010). ArticleCASPubMedPubMed Central Google Scholar
Montel, V., Gaultier, A., Lester, R. D., Campana, W. M. & Gonias, S. L. The low-density lipoprotein receptor-related protein regulates cancer cell survival and metastasis development. Cancer Res.67, 9817–9824 (2007). ArticleCASPubMed Google Scholar
Liu, M., Imam, H., Oberg, K. & Zhou, Y. Gene transfer of vasostatin, a calreticulin fragment, into neuroendocrine tumor cells results in enhanced malignant behavior. Neuroendocrinology82, 1–10 (2005). ArticleCASPubMed Google Scholar
Pike, S. E. et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood94, 2461–2468 (1999). CASPubMed Google Scholar
Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med.188, 2349–2356 (1998). ArticleCASPubMedPubMed Central Google Scholar
Helbling, D. et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc. Natl Acad. Sci. USA101, 13312–13317 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schardt, J. A., Eyholzer, M., Timchenko, N. A., Mueller, B. U. & Pabst, T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J. Cell. Mol. Med.14, 1509–1519 (2010). ArticleCASPubMed Google Scholar
Ogino, T. et al. Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin. Cancer Res.9, 4043–4051 (2003). CASPubMed Google Scholar
Ogino, T. et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res.66, 9281–9289 (2006). ArticleCASPubMed Google Scholar
Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol.11, 130–135 (2001). ArticleCASPubMed Google Scholar
Sarfati, M., Fortin, G., Raymond, M. & Susin, S. CD47 in the immune response: role of thrombospondin and SIRP-α reverse signaling. Curr. Drug Targets9, 842–850 (2008). ArticleCASPubMed Google Scholar
Matozaki, T., Murata, Y., Okazawa, H. & Ohnishi, H. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol.19, 72–80 (2009). ArticleCASPubMed Google Scholar
Frazier, W. A., Isenberg, J. S., Kaur, S., Roberts, D. D. CD47. UCSD Nature Molecule Pages (2010). Google Scholar
Lindberg, F. P. et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science274, 795–798 (1996). ArticleCASPubMed Google Scholar
Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science294, 1933–1936 (2001). ArticleCASPubMed Google Scholar
Weissman, I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA294, 1359–1366 (2005). ArticleCASPubMed Google Scholar
Chao, M. P. et al. Extra-nodal dissemination of non-Hodgkin's lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood118, 4890–4901 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature408, 307–310 (2000). ArticleCASPubMed Google Scholar
Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol.8, 275–283 (2007). ArticleCAS Google Scholar
Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Rev. Cancer8, 121–132 (2008). ArticleCAS Google Scholar
Park, W. S. et al. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J. Pathol.193, 162–168 (2001). ArticleCASPubMed Google Scholar
Landowski, T. H., Qu, N., Buyuksal, I., Painter, J. S. & Dalton, W. S. Mutations in the Fas antigen in patients with multiple myeloma. Blood90, 4266–4270 (1997). CASPubMed Google Scholar
Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood92, 3018–3024 (1998). CASPubMed Google Scholar
Shin, M. S. et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res.61, 4942–4946 (2001). CASPubMed Google Scholar
Fisher, M. J. et al. Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin. Cancer Res.7, 1688–1697 (2001). CASPubMed Google Scholar
Pai, S. I. et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res.58, 3513–3518 (1998). CASPubMed Google Scholar
Lee, S. H. et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res.59, 5683–5686 (1999). CASPubMed Google Scholar
Grubach, L. et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur. J. Haematol.81, 112–122 (2008). ArticleCASPubMed Google Scholar
Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis. Nature Rev. Cancer10, 361–371 (2010). ArticleCAS Google Scholar
Argiropoulos, B. & Humphries, R. K. Hox genes in hematopoiesis and leukemogenesis. Oncogene26, 6766–6776, (2007). ArticleCASPubMed Google Scholar
Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature Rev. Cancer11, 289–301 (2011). ArticleCAS Google Scholar
Garcia Pedrero, J. M. et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status. Am. J. Pathol.164, 73–79 (2004). ArticlePubMed Google Scholar
Paweletz, C. P. et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res.60, 6293–6297 (2000). CASPubMed Google Scholar