Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dever, T. E. Gene-specific regulation by general translation factors. Cell108, 545–556 (2002). ArticleCASPubMed Google Scholar
Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer3, 179–192 (2003). ArticleCAS Google Scholar
Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature433, 477–480 (2005). ArticleCASPubMed Google Scholar
Sonenberg, N. Translation factors as effectors of cell growth and tumorigenesis. Curr. Opin. Cell Biol.5, 955–960 (1993). ArticleCASPubMed Google Scholar
Lazaris-Karatzas, A. et al. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev.6, 1631–1642 (1992). ArticleCASPubMed Google Scholar
Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med.10, 484–486 (2004). ArticleCASPubMed Google Scholar
Shamji, A. F., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling. Mol. Cell12, 271–280 (2003). ArticleCASPubMed Google Scholar
Guertin, D. A. & Sabatini, D. M. The Pharmacology of mTOR Inhibition. Sci. Signal.2, pe24 (2009). ArticlePubMed Google Scholar
Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell79, 617–627 (1994). ArticleCASPubMed Google Scholar
Stebbins-Boaz, L. E. et al. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J.15, 2582–2592 (1996). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. & Maller, J. L. Xenopus Polo-like kinase Plx1: a multifunctional mitotic kinase. Nature24, 238–247 (2005). CAS Google Scholar
Peng, A. & Maller, J. L. Serine/threonine phosphatases in the DNA damage response and cancer. Oncogene29, 5977–5988 (2010). ArticleCASPubMed Google Scholar
Groisman, I., Jung, M. Y., Sarkissian, M., Cao, Q. & Richter, J. D. Translational control of the embryonic cell cycle. Cell109, 473–483 (2002). ArticleCASPubMed Google Scholar
Novoa, I., Gallego, J., Ferreira, P. G. & Mendez, R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nature Cell Biol.12, 447–456 (2010). ArticleCASPubMed Google Scholar
Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell43, 853–866 (2011). ArticleCASPubMedPubMed Central Google Scholar
Barnard, D. C., Ryan, K., Manley, J. L. & Richter, J. D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell119, 641–651 (2004). ArticleCASPubMed Google Scholar
Cao, Q., Kim, J. H. & Richter, J. D. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nature Struct. Mol. Biol.13, 1128–1134 (2006). ArticleCAS Google Scholar
Sarkissian, M. et al. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev.18, 48–61 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature404, 302–307 (2000). ArticleCASPubMed Google Scholar
Kim, J. H. & Richter, J. D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell24, 173–183 (2006). ArticleCASPubMed Google Scholar
Kim, J. H. & Richter, J. D. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev.21, 2571–2579 (2007). ArticleCASPubMedPubMed Central Google Scholar
Minshall, N. et al. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem.282, 37389–37401 (2007). ArticleCASPubMed Google Scholar
Jung, M. Y., Lorenz, L. & Richter, J. D. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell. Biol.26, 4277–4287 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mendez, R. et al. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell6, 1253–1259 (2000). ArticleCASPubMed Google Scholar
Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev.11, 2755–2766 (1997). ArticleCASPubMed Google Scholar
McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J.9, 3743–3751 (1990). ArticleCASPubMedPubMed Central Google Scholar
McGrew, L. L. et al. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev.3, 803–815 (1989). ArticleCASPubMed Google Scholar
Fox, C. A. et al. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev.3, 2151–2162 (1989). ArticleCASPubMed Google Scholar
Kuge, H. & Richter, J. D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J.14, 6301–6310 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kuge, H. et al. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res.26, 3208–3214 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lantz, V. et al. The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development115, 75–88 (1992). CASPubMed Google Scholar
Lantz, V. et al. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev.8, 598–613 (1994). ArticleCASPubMed Google Scholar
Christerson, L. B. & McKearin, D. M. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev.8, 614–628 (1994). ArticleCASPubMed Google Scholar
Zhang, J. H. et al. Cytoplasmic polyadenylation element binding protein is a conserved target of tumor suppressor HRPT2/CDC73. Cell Death Differ.17, 1551–15565 (2010). ArticleCASPubMed Google Scholar
Wang, L. et al. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature419, 312–316 (2002). ArticleCASPubMed Google Scholar
Read, R. L. et al. Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest. Proc. Natal. Acad. Sci. USA99, 12079–12084 (2002). ArticleCAS Google Scholar
Saitoh, S. et al. Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell109, 563–573 (2002). ArticleCASPubMed Google Scholar
Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development125, 1803–1813 (1998). CASPubMed Google Scholar
Tay, J., Hodgman, R. & Richter, J. D. The Control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol.221, 1–9 (2000). ArticleCASPubMed Google Scholar
Tay, J. et al. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev.17, 1457–1462 (2003). ArticleCASPubMedPubMed Central Google Scholar
Burns, D. M. & Richter, J. D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev.22, 3449–3460 (2008). ArticleCASPubMedPubMed Central Google Scholar
Udagawa, T. et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. Cell47, 253–266 (2012). ArticleCASPubMedPubMed Central Google Scholar
Burns, D. M., D'Ambrogio, A., Nottrott, S. & Richter, J. D. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature473, 105–108 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell. Biol.2, 521–529 (2001). ArticleCAS Google Scholar
Huang, Y. S., Kan, M. C., Lin, C. L. & Richter, J. D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J.25, 4865–4876 (2006). ArticleCASPubMedPubMed Central Google Scholar
Igea, A. et al. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J.29, 2182–2193 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hosoda, N. et al. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J.30, 1311–1323 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pavlopoulos, E. et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell147, 1369–1383 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ortiz-Zapater, E. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nature Med.18, 83–90 (2011). ArticlePubMedCAS Google Scholar
Groppo, R. & Richter, J. D. CPEB control of NF- B nuclear localization and interleukin-6 production mediates cellular senescence. Mol. Cell. Biol.31, 2707–2714 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, D. R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9, 166–180 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell1, 201–213 (2001). ArticleCASPubMed Google Scholar
Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron21, 1129–1139 (1998). ArticleCASPubMed Google Scholar
Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nature Rev. Cancer10, 254–266 (2010). ArticleCAS Google Scholar
Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev.23, 433–438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.20, 2202–2207 (2006). ArticleCASPubMedPubMed Central Google Scholar
Piqué, M., López, J. M., Foissac, S., Guigó, R. & Mendez, R. A. Combinatorial code for CPE-mediated translational control. Cell132, 434–448 (2008). ArticlePubMedCAS Google Scholar
Belloc, E. & Méndez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature452, 1017–1021 (2008). ArticleCASPubMed Google Scholar
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965). ArticleCASPubMed Google Scholar
Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Mol. Cell19, 25–31 (2009). CAS Google Scholar
Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell130, 223–233 (2007). ArticleCASPubMed Google Scholar
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer11, 85–95 (2011). ArticleCAS Google Scholar
Chen, M., David, C. J. & Manley, J. L. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nature Struct. Mol. Biol.19, 346–354 (2012). ArticleCAS Google Scholar
Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452, 230–233 (2008). ArticleCASPubMed Google Scholar
Lin, C. L., Evans, V., Shen, S., Xing, Y. & Richter, J. D. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA16, 338–348 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell133, 1019–1031 (2008). ArticleCASPubMed Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436, 660–665 (2005). ArticleCASPubMed Google Scholar
Prieur, A. & Peeper, D. S. Cellular senescence in vivo: a barrier to tumorigenesis. Curr. Opin. Cell Biol.20, 150–155 (2008). ArticleCASPubMed Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436, 720–724 (2005). ArticleCASPubMed Google Scholar
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436, 725–730 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jing, H. et al. Opposing roles of NF- B in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev.25, 2137–2146 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nagaoka, K., Udagawa, T. & Richter, J. D. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nature Commun.3, 675 (2012). ArticleCAS Google Scholar
McCaffrey, L. M., Montalbano, J., Mihai, C. & Macara, I. G. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell22, 601–614 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, N. J. et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene28, 2940–2947 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nairismägi, M. L. et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene31, 4960–4966 (2012). ArticlePubMedCAS Google Scholar
Wang, H. et al. Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int. J. Oncol.30, 947–953 (2007). CASPubMed Google Scholar
McClellan, M. et al. An accelerated pathway for targeted cancer therapies. Nature Rev. Drug Discov.10, 79–80 (2011). ArticleCAS Google Scholar
Ule, J. CLIP identifies Nova-regulated RNA networks in the brain. Science302, 1212–1215 (2003). ArticleCASPubMed Google Scholar
König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nature Rev. Genet.13, 77–83 (2012). ArticleCASPubMed Google Scholar
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protoc.7, 1534–1550 (2012). ArticleCAS Google Scholar