Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell29, 161–169 (1982). ArticleCASPubMed Google Scholar
Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). ArticleCASPubMed Google Scholar
Greger, V., Passarge, E., Hopping, W., Messmer, E. & Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet.83, 155–158 (1989). ArticleCASPubMed Google Scholar
Sakai, T. et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Amer. J. Hum. Genet.48, 880–888 (1991). CAS Google Scholar
Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nature Genet.43, 768–775 (2011). ArticleCASPubMed Google Scholar
Boveri, T. Concerning the Origin of Malignant Tumors (Williams and Wilkins, 1929). Google Scholar
Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nature Rev. Cancer4, 677–687 (2004). ArticleCAS Google Scholar
Lever, E. & Sheer, D. The role of nuclear organization in cancer. J. Pathol.220, 114–125 (2010). ArticleCASPubMed Google Scholar
Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genet.41, 246–250 (2009). ArticleCASPubMed Google Scholar
Zullo, J. M. et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell149, 1474–1487 (2012). ArticleCASPubMed Google Scholar
Hu, S., Cheng, L. & Wen, B. Large chromatin domains in pluripotent and differentiated cells. Acta Biochim. Biophys. Sin. (Shanghai)44, 48–53 (2012). ArticleCAS Google Scholar
Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell38, 603–613 (2010). CAS Google Scholar
Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature452, 243–247 (2008). ArticleCASPubMed Google Scholar
Chow, K. H., Factor, R. E. & Ullman, K. S. The nuclear envelope environment and its cancer connections. Nature Rev. Cancer12, 196–209 (2012). ArticleCAS Google Scholar
Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell6, 479–491 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res.22, 246–258 (2012). ArticleCASPubMedPubMed Central Google Scholar
McDonald, O. G., Wu, H., Timp, W., Doi, A. & Feinberg, A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nature Struct. Mol. Biol.18, 867–874 (2011). ArticleCAS Google Scholar
Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nature Rev. Genet.12, 7–18 (2011). ArticlePubMedCAS Google Scholar
Wen, B. et al. Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics13, 566 (2012). ArticleCASPubMedPubMed Central Google Scholar
Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genet.44, 40–46 (2012). ArticleCAS Google Scholar
De, S. & Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nature Struct. Mol. Biol.18, 950–955 (2011). ArticleCAS Google Scholar
Nestor, C., Ruzov, A., Meehan, R. & Dunican, D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques48, 317–319 (2010). ArticleCASPubMed Google Scholar
Jin, S.-G., Kadam, S. & Pfeifer, G. P. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res.38, e125 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, M.-L. et al. Quantification of 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from hepatocellular carcinoma tissues by capillary hydrophilic-interaction liquid chromatography/quadrupole TOF mass spectrometry. Clin. Chem.59, 824–832 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L.-T. et al. Quantification of the sixth DNA base 5-hydroxymethylcytosine in colorectal cancer tissue and C-26 cell line. Bioanalysis5, 839–845 (2013). ArticleCASPubMed Google Scholar
Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science336, 934–937 (2012). ArticleCASPubMed Google Scholar
Sun, Z. et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep.3, 567–576 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wolf, S. F. & Migeon, B. R. Studies of X chromosome DNA methylation in normal human cells. Nature295, 667–671 (1982). ArticleCASPubMed Google Scholar
Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell40, 91–99 (1985). ArticleCASPubMed Google Scholar
Goelz, S. E., Vogelstein, B., Hamilton, S. R. & Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science228, 187–190 (1985). ArticleCASPubMed Google Scholar
Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48, 1159–1161 (1988). CASPubMed Google Scholar
Feinberg, A. P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun.111, 47–54 (1983). ArticleCASPubMed Google Scholar
De Smet, C. et al. The activation of human gene _MAGE_-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. USA93, 7149–7153 (1996). ArticleCASPubMedPubMed Central Google Scholar
Iacobuzio-Donahue, C. A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Amer. J. Pathol.162, 1151–1162 (2003). CAS Google Scholar
Oshimo, Y. et al. Promoter methylation of cyclin D2 gene in gastric carcinoma. Int. J. Oncol.23, 1663–1670 (2003). CASPubMed Google Scholar
Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M. & Masuda, T. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am. J. Pathol.163, 1911–1919 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cho, M. et al. Hypomethylation of the MN/CA9 promoter and upregulated MN/CA9 expression in human renal cell carcinoma. Br. J. Cancer85, 563–567 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, N. & Takenaga, K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin. Exper. Metastasis16, 471–479 (1998). ArticleCAS Google Scholar
Badal, V. et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J. Virol.77, 6227–6234 (2003). ArticlePubMedPubMed Central Google Scholar
de Capoa, A. et al. DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol. Rep.10, 545–549 (2003). CASPubMed Google Scholar
Sato, N. et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res.63, 4158–4166 (2003). CASPubMed Google Scholar
Piyathilake, C. J. et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control14, 37–42 (2003). ArticleCASPubMed Google Scholar
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). ArticleCAS Google Scholar
Jones, P. A. et al. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl Acad. Sci. USA87, 6117–6121 (1990). ArticleCASPubMedPubMed Central Google Scholar
Bestor, T. H. Unanswered questions about the role of promoter methylation in carcinogenesis. Ann. NY Acad. Sci.983, 22–27 (2003). ArticleCASPubMed Google Scholar
Hosoya, K. et al. Adenomatous polyposis coli 1A is likely to be methylated as a passenger in human gastric carcinogenesis. Cancer Lett.285, 182–189 (2009). ArticleCASPubMed Google Scholar
Levanon, D. et al. Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol. Med.3, 593–604 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hitchins, M. P. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med.356, 697–705 (2007). ArticleCASPubMed Google Scholar
Hitchins, M. P. & Ward, R. L. Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nature Genet.39, 1289 (2007). ArticleCASPubMed Google Scholar
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). ArticleCASPubMed Google Scholar
Sproul, D. et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc. Natl Acad. Sci. USA108, 4364–4369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sproul, D. et al. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol.13, R84 (2012). ArticleCASPubMedPubMed Central Google Scholar
Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genet.41, 178–186 (2009). ArticleCASPubMed Google Scholar
Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genet.41, 1350–1353 (2009). ArticleCASPubMed Google Scholar
Teschendorff, A. et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med.4, 24 (2012). ArticleCASPubMedPubMed Central Google Scholar
Corrada Bravo, H., Pihur, V., McCall, M., Irizarry, R. & Leek, J. Gene expression anti-profiles as a basis for accurate universal cancer signatures. BMC Bioinformatics13, 272 (2012). ArticlePubMed Central Google Scholar
Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med.13, 373–380 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med.13, 363–372 (2007). ArticleCASPubMed Google Scholar
Roberts, C. W. & Orkin, S. H. The SWI/SNF complex--chromatin and cancer. Nature Rev. Cancer4, 133–142 (2004). ArticleCAS Google Scholar
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature458, 362–366 (2009). ArticleCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet.37, 1090–1097 (2005). ArticleCASPubMed Google Scholar
Zofall, M. et al. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature461, 419–422 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gardner, K. E., Allis, C. D. & Strahl, B. D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol.409, 36–46 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet.39, 237–242 (2007). ArticleCASPubMed Google Scholar
Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet.39, 157–158 (2007). ArticleCASPubMed Google Scholar
Guil, S. & Esteller, M. Cis-acting noncoding RNAs: friends and foes. Nature Struct. Mol. Biol.19, 1068–1075 (2012). ArticleCAS Google Scholar
Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res.39, D945–D950 (2011). ArticleCASPubMed Google Scholar
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321, 1801–1806 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science331, 1199–1203 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature482, 226–231 (2012). ArticleCASPubMed Google Scholar
Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer7, 823–833 (2007). ArticleCAS Google Scholar
Yan, X. J. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature Genet.43, 309–315 (2011). ArticleCASPubMed Google Scholar
Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell18, 553–567 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kosmider, O. et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica94, 1676–1681 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet.43, 830–837 (2011). ArticleCASPubMed Google Scholar
Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genet.44, 251–253 (2012). ArticleCASPubMed Google Scholar
Cooper, D. N., Mort, M., Stenson, P. D., Ball, E. V. & Chuzhanova, N. A. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum. Genomics4, 406–410 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature488, 504–507 (2012). ArticlePubMedCAS Google Scholar
Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L. A. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotech.29, 1109–1113 (2011). ArticleCAS Google Scholar
Miremadi, A., Oestergaard, M. Z., Pharoah, P. D. & Caldas, C. Cancer genetics of epigenetic genes. Human Mol. Genet.16 (Suppl. 1), R28–R49 (2007). ArticleCAS Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). ArticleCASPubMed Google Scholar
Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell139, 693–706 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell10, 678–684 (2012). ArticleCASPubMed Google Scholar
Suvà, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science339, 1567–1570 (2013). ArticlePubMedCAS Google Scholar
Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer6, 38–51 (2006). ArticleCAS Google Scholar
Waddington, C. H. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, 1957). Google Scholar
Rando, O. J. & Verstrepen, K. J. Timescales of genetic and epigenetic inheritance. Cell128, 655–668 (2007). ArticleCASPubMed Google Scholar
Feinberg, A. P. & Irizarry, R. A. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl Acad. Sci. USA107 (Suppl. 1), 1757–1764 (2010). ArticleCASPubMed Google Scholar
Alvarez, H. et al. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet.7, e1001356 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shah, M. Y. et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res.70, 5840–5850 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution30, 314–334 (1976). ArticlePubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Kaneda, A. & Feinberg, A. P. Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res.65, 11236–11240 (2005). ArticleCASPubMed Google Scholar
Timp, W., Levchenko, A. & Feinberg, A. P. A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction. Cell Cycle8, 383–390 (2009). ArticleCASPubMed Google Scholar
Kondo, Y. & Issa, J. P. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev.23, 29–39 (2004). ArticleCASPubMed Google Scholar
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell49, 359–367 (2013). ArticleCASPubMed Google Scholar
Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science299, 1753–1755 (2003). ArticleCASPubMed Google Scholar
Sakatani, T. et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science307, 1976–1978 (2005). ArticleCASPubMed Google Scholar
Teschendorff, A. E. & Widschwendter, M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics28, 1487–1494 (2012). ArticleCASPubMed Google Scholar
Siddique, H., Zou, J. P., Rao, V. N. & Reddy, E. The BRCA2 is a histone acetyltransferase. Oncogene16, 2283 (1998). ArticleCASPubMed Google Scholar
Fuks, F., Milner, J. & Kouzarides, T. BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene17, 2531 (1998). ArticleCASPubMed Google Scholar
Esteve, P. O., Chin, H. G. & Pradhan, S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl Acad. Sci. USA102, 1000–1005 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell5, 455–463 (2004). ArticleCASPubMed Google Scholar
Campbell, P. M. & Szyf, M. Human DNA methyltransferase gene DNMT1 is regulated by the APC pathway. Carcinogenesis24, 17–24 (2003). ArticleCASPubMed Google Scholar
Sun, L. et al. Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell. Signal.19, 2255–2263 (2007). ArticleCASPubMed Google Scholar
Lofton-Day, C. et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem.54, 414–423 (2008). ArticleCASPubMed Google Scholar
Zou, H. et al. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol. Biomarkers Prev.16, 2686–2696 (2007). ArticleCASPubMed Google Scholar
Lee, W. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91, 11733–11737 (1994). ArticleCASPubMedPubMed Central Google Scholar
Zhuang, J. et al. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet.8, e1002517 (2012). ArticleCASPubMedPubMed Central Google Scholar
Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nature Biotech.27, 858–863 (2009). ArticleCAS Google Scholar
Silber, J. R., Bobola, M. S., Blank, A. & Chamberlain, M. C. O6-Methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim. Biophys. Acta1826, 71–82 (2012). CASPubMedPubMed Central Google Scholar
Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med.17, 330–339 (2011). ArticleCASPubMed Google Scholar
Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature Chem. Biol.8, 890–896 (2012). ArticleCAS Google Scholar
Fiskus, W. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood114, 2733–2743 (2009). ArticleCASPubMedPubMed Central Google Scholar
Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett.3, 850–855 (2012). CAS Google Scholar
Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell20, 53–65 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hull, M. A. Nutritional agents with anti-inflammatory properties in chemoprevention of colorectal neoplasia. Recent Results Cancer Res.191, 143–156 (2013). ArticleCASPubMed Google Scholar
Kraus, S., Naumov, I. & Arber, N. COX-2 active agents in the chemoprevention of colorectal cancer. Recent Results Cancer Res.191, 95–103 (2013). ArticleCASPubMed Google Scholar
Joshi, P. H. et al. A point-by-point response to recent arguments against the use of statins in primary prevention: this statement is endorsed by the American Society for Preventive Cardiology. Clin. Cardiol.35, 404–409 (2012). ArticlePubMedPubMed Central Google Scholar
Yuasa, Y. et al. Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int. J. Cancer131, 2596–2603 (2012). ArticleCASPubMed Google Scholar
Kaneda, A. et al. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc. Natl Acad. Sci. USA104, 20926–20931 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticlePubMedCAS Google Scholar
Kanai, Y., Ushijima, S., Nakanishi, Y., Sakamoto, M. & Hirohashi, S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett.192, 75–82 (2003). ArticleCASPubMed Google Scholar
Tefferi, A. et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia23, 905–911 (2009). ArticleCASPubMedPubMed Central Google Scholar
Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genet.41, 838–842 (2009). ArticleCASPubMed Google Scholar
Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet.43, 875–878 (2011). ArticleCASPubMed Google Scholar
Ward, R., Johnson, M., Shridhar, V., van Deursen, J. & Couch, F. J. CBP truncating mutations in ovarian cancer. J. Med. Genet.42, 514–518 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature466, 869–873 (2010). ArticleCASPubMed Google Scholar
Kishimoto, M. et al. Mutations and deletions of the CBP gene in human lung cancer. Clin. Cancer Res.11, 512–519 (2005). CAS Google Scholar
Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature463, 360–363 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cromer, M. K. et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J. Clin. Endocrinol. Metab.97, E1774–E1781 (2012). ArticleCASPubMedPubMed Central Google Scholar
Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science331, 435–439 (2011). ArticleCASPubMed Google Scholar
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet.42, 181–185 (2010). ArticleCASPubMed Google Scholar
Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet.42, 722–726 (2010). ArticleCASPubMed Google Scholar
Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genet.44, 694–698 (2012). ArticleCASPubMed Google Scholar
Network, T. C.G. A. Comprehensive molecular characterization of human colon and rectal cancer. Nature487, 330–337 (2012). ArticleCAS Google Scholar
Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature469, 539–542 (2011). ArticleCASPubMedPubMed Central Google Scholar
Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res.59, 74–79 (1999). CASPubMed Google Scholar
Woodson, K. et al. Loss of insulin-like growth factor-II imprinting and the presence of screen-detected colorectal adenomas in women. J. Natl Cancer Inst.96, 407–410 (2004). ArticleCASPubMed Google Scholar
Yun, K., Soejima, H., Merrie, A. E. H., McCall, J. L. & Reeve, A. E. Analysis of IGF2 gene imprinting in breast and colorectal cancer by allele specific-PCR. J. Pathol.187, 518–522 (1999). ArticleCASPubMed Google Scholar
Nakagawa, M. et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep.18, 769–774 (2007). CASPubMed Google Scholar
Halkidou, K. et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate59, 177–189 (2004). ArticleCASPubMed Google Scholar
Kawai, H., Li, H., Avraham, S., Jiang, S. & Avraham, H. K. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int. J. Cancer107, 353–358 (2003). ArticleCASPubMed Google Scholar
Lin, Z. et al. Combination of proteasome and HDAC inhibitors for uterine cervical cancer treatment. Clin. Cancer Res.15, 570–577 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100, 11606–11611 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huang, B. H. et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ.12, 395–404 (2005). ArticleCASPubMed Google Scholar
Wilson, A. J. et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem.281, 13548–13558 (2006). ArticleCASPubMed Google Scholar
Zhang, Z. et al. HDAC6 expression is correlated with better survival in breast cancer. Clin. Cancer Res.10, 6962–6968 (2004). CAS Google Scholar
Jung-Hynes, B., Nihal, M., Zhong, W. & Ahmad, N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem.284, 3823–3832 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ashraf, N. et al. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer95, 1056–1061 (2006). ArticleCAS Google Scholar
Lu, P. J. et al. A novel gene (_PLU_-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem.274, 15633–15645 (1999). ArticleCASPubMed Google Scholar
Silva, F. P. et al. Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene27, 2686–2692 (2008). ArticleCASPubMed Google Scholar
Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genet.41, 465–472 (2009). ArticleCASPubMed Google Scholar
Peng, D. F. et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis27, 1160–1168 (2006). ArticleCASPubMed Google Scholar
Saito, Y. et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int. J. Cancer105, 527–532 (2003). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J. Urol.173, 1767–1771 (2005). ArticleCASPubMed Google Scholar
Agoston, A. T. et al. Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J. Biol. Chem.280, 18302–18310 (2005). ArticleCASPubMed Google Scholar
Butcher, D. T. & Rodenhiser, D. I. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur. J. Cancer43, 210–219 (2007). ArticleCASPubMed Google Scholar
McCarthy, H. et al. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood101, 4903–4908 (2003). ArticleCASPubMed Google Scholar