Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? (original) (raw)
Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature440, 623–630 (2006). ArticleCASPubMed Google Scholar
Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem.382, 1521–1539 (2001). ArticleCASPubMed Google Scholar
Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet.5, 123–135 (2004). ArticleCASPubMed Google Scholar
Adams, K. L. & Palmer, J. D. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol.29, 380–395 (2003). ArticleCASPubMed Google Scholar
Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev.59, 527–605 (1979). ArticleCASPubMed Google Scholar
Quinlan, C. L. et al. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem.289, 8312–8325 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gardner, P. R. Superoxide-driven aconitase FE-S center cycling. Biosci. Rep.17, 33–42 (1997). ArticleCASPubMed Google Scholar
Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol.91, 807–819 (2006). ArticleCASPubMed Google Scholar
Fabian, M. & Palmer, G. Hydrogen peroxide is not released following reaction of cyanide with several catalytically important derivatives of cytochrome c oxidase. FEBS Lett.422, 1–4 (1998). ArticleCASPubMed Google Scholar
Han, D., Antunes, F., Canali, R., Rettori, D. & Cadenas, E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem.278, 5557–5563 (2003). ArticleCASPubMed Google Scholar
Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem.282, 1183–1192 (2007). ArticleCASPubMed Google Scholar
Waypa, G. B. et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res.106, 526–535 (2010). This study demonstrates how hypoxia-induced changes in mitochondrial ROS generation affect redox status in subcellular compartments differently. ArticleCASPubMed Google Scholar
Sabharwal, S. S., Waypa, G. B., Marks, J. D. & Schumacker, P. T. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem. J.456, 337–346 (2013). ArticleCASPubMed Google Scholar
Mills, G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem.229, 189–197 (1957). CASPubMed Google Scholar
Morgan, B. et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chem. Biol.9, 119–125 (2013). ArticleCAS Google Scholar
Chae, H. Z. & Rhee, S. G. A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors4, 177–180 (1994). CASPubMed Google Scholar
Kim, K., Kim, I. H., Lee, K. Y., Rhee, S. G. & Stadtman, E. R. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem.263, 4704–4711 (1988). CASPubMed Google Scholar
Rhee, S. G., Chae, H. Z. & Kim, K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med.38, 1543–1552 (2005). ArticleCASPubMed Google Scholar
Lewis, C. A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell55, 253–263 (2014). ArticleCASPubMedPubMed Central Google Scholar
Holmgren, A. Thioredoxin and glutaredoxin systems. J. Biol. Chem.264, 13963–13966 (1989). CASPubMed Google Scholar
Rhee, S. G., Jeong, W., Chang, T. S. & Woo, H. A. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. Suppl. S3–S8 (2007).
Arner, E. S. & Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol.16, 420–426 (2006). This excellent review summarizes the role of thioredoxin and its contributions to the cellular phenotype of cancer cells. ArticleCASPubMed Google Scholar
Padmanabhan, B. et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell21, 689–700 (2006). ArticleCASPubMed Google Scholar
Singh, A., Bodas, M., Wakabayashi, N., Bunz, F. & Biswal, S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox. Signal.13, 1627–1637 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shibata, T. et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl Acad. Sci. USA105, 13568–13573 (2008). ArticlePubMedPubMed Central Google Scholar
Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell51, 236–248 (2013). This study examines the mechanisms by which FH deficiency drives tumour cell behaviour in a redox-dependent manner. ArticleCASPubMedPubMed Central Google Scholar
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324, 1029–1033 (2009). This excellent review summarizes the role of the Warburg effect on cell proliferation. ArticleCASPubMedPubMed Central Google Scholar
Le, A. et al. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter. Proc. Natl Acad. Sci. USA111, 12486–12491 (2014). ArticleCASPubMedPubMed Central Google Scholar
Waypa, G. B. et al. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am. J. Respir. Crit. Care Med.187, 424–432 (2013). ArticleCASPubMedPubMed Central Google Scholar
Farrow, K. N. et al. Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid. Redox. Signal.17, 460–470 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA95, 11715–11720 (1998). This study was the first to demonstrate that mitochondria-derived ROS can regulate transcription through their control of HIF1α stability. ArticleCASPubMedPubMed Central Google Scholar
Waypa, G. B. et al. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ. Res.99, 970–978 (2006). ArticleCASPubMed Google Scholar
Chi, A. Y., Waypa, G. B., Mungai, P. T. & Schumacker, P. T. Prolonged hypoxia increases ROS signaling and RhoA activation in pulmonary artery smooth muscle and endothelial cells. Antioxid. Redox. Signal.12, 603–610 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell. Metab.1, 401–408 (2005). This study demonstrated the importance of mitochondrial complex III in hypoxia-induced ROS generation that controls HIF1α stability. ArticleCASPubMed Google Scholar
Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell. Metab.1, 393–399 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bell, E. L., Emerling, B. M. & Chandel, N. S. Mitochondrial regulation of oxygen sensing. Mitochondrion.5, 322–332 (2005). ArticleCASPubMed Google Scholar
Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA107, 8788–8793 (2010). This study examines the role of mitochondrial ROS signalling in the tumorigenic behaviour induced by KRAS activation. ArticlePubMedPubMed Central Google Scholar
Sanjuan-Pla, A. et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1α. FEBS Lett.579, 2669–2674 (2005). ArticleCASPubMed Google Scholar
Hamanaka, R. B. et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal.6, ra8 (2013). ArticleCASPubMedPubMed Central Google Scholar
Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APCMin/+ mice. Am. J. Pathol.180, 24–31 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brandon, M., Baldi, P. & Wallace, D. C. Mitochondrial mutations in cancer. Oncogene25, 4647–4662 (2006). This is an excellent review of the evidence linking mtDNA mutations and cancer. ArticleCASPubMed Google Scholar
Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science320, 661–664 (2008). This study demonstrates that mtDNA mutations can amplify tumour progression by increasing cellular ROS generation. ArticleCASPubMed Google Scholar
Alexeyev, M., Shokolenko, I., Wilson, G. & Ledoux, S. The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harb. Perspect. Biol.5, a012641 (2013). ArticleCASPubMedPubMed Central Google Scholar
Larsen, N. B., Rasmussen, M. & Rasmussen, L. J. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion5, 89–108 (2005). ArticleCASPubMed Google Scholar
Clayton, D. A. & Vinograd, J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature216, 652–657 (1967). ArticleCASPubMed Google Scholar
Clayton, D. A. & Vinograd, J. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc. Natl Acad. Sci. USA62, 1077–1084 (1969). ArticleCASPubMedPubMed Central Google Scholar
Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet.20, 291–293 (1998). ArticleCASPubMed Google Scholar
Kulawiec, M., Salk, J. J., Ericson, N. G., Wanagat, J. & Bielas, J. H. Generation, function, and prognostic utility of somatic mitochondrial DNA mutations in cancer. Environ. Mol. Mutagen51, 427–439 (2010). CASPubMed Google Scholar
Chatterjee, A., Mambo, E. & Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene25, 4663–4674 (2006). ArticleCASPubMed Google Scholar
Coller, H. A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet.28, 147–150 (2001). ArticleCASPubMed Google Scholar
Zhidkov, I., Livneh, E. A., Rubin, E. & Mishmar, D. MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints. Genome Res.19, 576–580 (2009). ArticleCASPubMedPubMed Central Google Scholar
Linnartz, B., Anglmayer, R. & Zanssen, S. Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes. Cancer Res.64, 1966–1971 (2004). This study tracked the association between the increase in mtDNA mutations over time and the progression from myelodysplastic syndrome to acute myeloid leukaemia in patients. ArticleCASPubMed Google Scholar
Kirches, E. et al. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int. J. Cancer93, 534–538 (2001). ArticleCASPubMed Google Scholar
Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA102, 719–724 (2005). This study used cellular cybrids to examine the role of mtDNA mutations on ROS generation and tumorigenicity in prostate cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Trounce, I., Neill, S. & Wallace, D. C. Cytoplasmic transfer of the mtDNA nt 8993 T-->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc. Natl Acad. Sci. USA91, 8334–8338 (1994). ArticleCASPubMedPubMed Central Google Scholar
Mattiazzi, M. et al. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum. Mol. Genet.13, 869–879 (2004). ArticleCASPubMed Google Scholar
Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res.65, 1655–1663 (2005). ArticleCASPubMed Google Scholar
Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell23, 287–301 (2013). ArticleCASPubMedPubMed Central Google Scholar
Namslauer, I. & Brzezinski, P. A mitochondrial DNA mutation linked to colon cancer results in proton leaks in cytochrome c oxidase. Proc. Natl Acad. Sci. USA106, 3402–3407 (2009). ArticlePubMedPubMed Central Google Scholar
Samper, E., Nicholls, D. G. & Melov, S. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell2, 277–285 (2003). ArticleCASPubMed Google Scholar
VanRemmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genom.16, 29–37 (2003). ArticleCAS Google Scholar
Liu, L., Trimarchi, J. R., Smith, P. J. & Keefe, D. L. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell1, 40–46 (2002). ArticleCASPubMed Google Scholar
Martinez-Outschoorn, U. E. et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle9, 3256–3276 (2010). CASPubMedPubMed Central Google Scholar
Degan, P. et al. In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis16, 735–741 (1995). ArticleCASPubMed Google Scholar
Ponte, F. et al. Improvement of genetic stability in lymphocytes from Fanconi anemia patients through the combined effect of α-lipoic acid and N-acetylcysteine. Orphanet. J. Rare. Dis.7, 28 (2012). ArticlePubMedPubMed Central Google Scholar
Gerasimenko, J. V. et al. Menadione-induced apoptosis: roles of cytosolic Ca2+ elevations and the mitochondrial permeability transition pore. J. Cell Sci.115, 485–497 (2002). CASPubMed Google Scholar
Bernardi, P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev.79, 1127–1155 (1999). ArticleCASPubMed Google Scholar
Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA110, 5887–5892 (2013). ArticleCASPubMedPubMed Central Google Scholar
Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticleCASPubMed Google Scholar
Loor, G. et al. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim. Biophys. Acta1813, 1382–1394 (2011). ArticleCASPubMed Google Scholar
Schriewer, J. M., Peek, C. B., Bass, J. & Schumacker, P. T. ROS-mediated, PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J. Am. Heart Assoc.2, e000159 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Rev. Cancer8, 425–437 (2008). ArticleCAS Google Scholar
Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell10, 241–252 (2006). ArticleCASPubMed Google Scholar
Lee, S. R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem.277, 20336–20342 (2002). This study demonstrated how H2O2generation can lead to the reversible inactivation of the lipid phosphatase PTEN, with important implications for cancer cell growth driven by excessive ROS signalling. ArticleCASPubMed Google Scholar
Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl Acad. Sci. USA101, 16419–16424 (2004). ArticleCASPubMedPubMed Central Google Scholar
Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene29, 625–634 (2010). This is an excellent review of the role of HIF1 in cancer. ArticleCASPubMed Google Scholar
Semenza, G. L. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin. Cancer Biol.19, 12–16 (2009). ArticleCASPubMed Google Scholar
Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA95, 7987–7992 (1998). This is a classic paper describing the regions of the HIF1α protein that confer sensitivity to hypoxia. ArticleCASPubMedPubMed Central Google Scholar
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001). This study demonstrates the importance of SDH mutations in the formation of hereditary paragangliomas, thereby linking mitochondria to tumorigenic behaviour. ArticleCASPubMed Google Scholar
Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001). ArticleCASPubMed Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCASPubMed Google Scholar
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-α during hypoxia: A mechanism of O2 sensing. J. Biol. Chem.275, 25130–25138 (2000). ArticleCASPubMed Google Scholar
Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell. Metab.1, 409–414 (2005). ArticleCASPubMed Google Scholar
Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7, 77–85 (2005). ArticleCASPubMed Google Scholar
Rustin, P. & Roetig, A. Inborn errors of complex II - Unusual human mitochondrial diseases. Biochim. Biophys. Acta1553, 117–122 (2002). ArticleCASPubMed Google Scholar
Ackrell, B. A. C. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett.466, 1–5 (2000). ArticleCASPubMed Google Scholar
Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science287, 848–851 (2000). ArticleCASPubMed Google Scholar
Gimenez-Roqueplo, A. P. et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet.69, 1186–1197 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dekker, P. B. D. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol.201, 480–486 (2003). ArticleCAS Google Scholar
Astrom, K., Cohen, J. E., Willett-Brozick, J. E., Aston, C. E. & Baysal, B. E. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum. Genet.113, 228–237 (2003). ArticlePubMed Google Scholar
Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. & Schumacker, P. T. Loss of SdhB, but not SdhA, subunit of Complex. II triggers ROS-dependent HIF activation and tumorigenesis. Mol. Cell. Biol.28, 718–731 (2007). ArticleCASPubMedPubMed Central Google Scholar
Owens, K. M. et al. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2-• and H2O2 . Free Radic. Biol. Med.52, 160–166 (2012). ArticleCASPubMed Google Scholar
Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet.30, 406–410 (2002). ArticleCASPubMed Google Scholar
Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet.14, 2231–2239 (2005). ArticleCASPubMed Google Scholar
Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell8, 143–153 (2005). ArticleCASPubMed Google Scholar
Sudarshan, S. et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species. Mol. Cell. Biol.29, 4080–4090 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature481, 385–388 (2012). ArticleCAS Google Scholar
Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest.123, 3664–3671 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hu, Y. et al. K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res.22, 399–412 (2012). ArticleCASPubMed Google Scholar
Dang, C. V. et al. Function of the c-Myc oncogenic transcription factor. Exp. Cell Res.253, 63–77 (1999). ArticleCASPubMed Google Scholar
Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA105, 18782–18787 (2008). ArticlePubMedPubMed Central Google Scholar
Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol.25, 6225–6234 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA94, 6658–6663 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chandel, N. S., Trzyna, W. C., McClintock, D. S. & Schumacker, P. T. Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J. Immunol.165, 1013–1021 (2000). ArticleCASPubMed Google Scholar
Schumacker, P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell10, 175–176 (2006). ArticleCASPubMed Google Scholar
Hashemy, S. I., Ungerstedt, J. S., Avval, F. Z. & Holmgren, A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J. Biol. Chem.281, 10691–10697 (2006). ArticleCASPubMed Google Scholar
Goodman, M., Bostick, R. M., Kucuk, O. & Jones, D. P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic. Biol. Med.51, 1068–1084 (2011). ArticleCASPubMed Google Scholar
Creagan, E. T. et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N. Engl. J. Med.301, 687–690 (1979). ArticleCASPubMed Google Scholar
Jung, H. J. et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J. Biol. Chem.285, 11584–11595 (2010). ArticleCASPubMedPubMed Central Google Scholar