The Bcl2 family: regulators of the cellular life-or-death switch (original) (raw)
Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).Cell death recognized to be an intrinsic cellular programme that plays a complementary role to mitosis in regulating tissue homeostasis.
Vaux, D. L., Cory, S. & Adams, J. M. _Bcl_-2 gene promotes haemopoietic cell survival and cooperates with c-Myc to immortalize pre-B cells. Nature 335, 440–442 (1988).Discovery thatBcl2promotes cell survival. First recognition that cell survival is controlled separately from cell proliferation and that inhibition of apoptosis is a central step in tumour development. The first demonstration of co-operativity of Bcl2 and Myc in transformation.
Cory, S., Vaux, D. L., Strasser, A., Harris, A. W. & Adams, J. M. Insights from Bcl2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res.59, S1685–S1692 (1999). Google Scholar
Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002). ArticleCASPubMed Google Scholar
Gross, A., McDonnell, J. M. & Korsmeyer, S. J. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev.13, 1899–1911 (1999). ArticleCASPubMed Google Scholar
Vander Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol.1, E209–E216 (1999). ArticleCASPubMed Google Scholar
Strasser, A., O'Connor, L. & Dixit, V. M. Apoptosis signaling. Annu. Rev. Biochem.69, 217–245 (2000). ArticleCASPubMed Google Scholar
Adams, J. M. & Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci.26, 61–66 (2001). ArticleCASPubMed Google Scholar
Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev.15, 2922–2933 (2001). CASPubMed Google Scholar
Martinou, J.-C. & Green, D. R. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol.2, 63–67 (2001). ArticleCAS Google Scholar
Horvitz, H. R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res.59(7 Suppl), 1701s–1706s (1999). Google Scholar
Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human _BCL_-2. Science258, 1955–1957 (1992).This demonstration that humanBCL2could replace the worm survival gene revealed the marked evolutionary conservation of the apoptotic machinery. ArticleCASPubMed Google Scholar
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene _ced_-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell75, 641–652 (1993).An illuminating moment, when developmental genetics and mammalian biochemistry converged to reveal that cell death is launched by the activation of a class of cysteine proteases, later called caspases. ArticleCASPubMed Google Scholar
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell9, 459–470 (2002). ArticleCASPubMed Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997).Surprising revelation that activation of an apoptosis machine in mammalian cells depends on cytochromec, which is released from the mitochondria of cells subjected to intracellular stress. ArticleCASPubMed Google Scholar
Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer2, 420–430 (2002). ArticleCAS Google Scholar
Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell74, 609–619 (1993).First evidence that Bcl2 has pro-apoptotic relatives. ArticleCASPubMed Google Scholar
Janiak, F., Leber, B. & Andrews, D. W. Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J. Biol. Chem.269, 9842–9849 (1994). ArticleCASPubMed Google Scholar
Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature381, 335–341 (1996). ArticleCASPubMed Google Scholar
Huang, Q., Petros, A. M., Virgin, H. W., Fesik, S. W. & Olejniczak, E. T. Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc. Natl Acad. Sci. USA99, 3428–3433 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science275, 983–986 (1997).Together with reference24, this paper provided the first structural insight into how the pro- and anti-apoptotic Bcl2 family members interact. ArticleCASPubMed Google Scholar
Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell103, 645–654 (2000).The structure of full-length Bax unexpectedly revealed that the carboxy-terminal tail needed for membrane association occludes its surface pocket. ArticleCASPubMed Google Scholar
McDonnell, T. J. et al. _Bcl_-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell57, 79–88 (1989). ArticleCASPubMed Google Scholar
Strasser, A., Harris, A. W. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell67, 889–899 (1991). ArticleCASPubMed Google Scholar
Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl Acad. Sci. USA88, 8661–8665 (1991). ArticleCASPubMedPubMed Central Google Scholar
Sentman, C. L., Shutter, J. R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S. J. _Bcl_-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell67, 879–888 (1991). ArticleCASPubMed Google Scholar
Ogilvy, S. et al. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl Acad. Sci. USA96, 14943–14948 (1999). ArticleCASPubMedPubMed Central Google Scholar
Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell75, 229–240 (1993). ArticleCASPubMed Google Scholar
Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science267, 1506–1510 (1995). ArticleCASPubMed Google Scholar
Print, C. G. et al. Apoptosis regulator Bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc. Natl Acad. Sci. USA95, 12424–12431 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ross, A. J. et al. Testicular degeneration in _Bcl-w_-deficient mice. Nature Genet.18, 251–256 (1998). ArticleCASPubMed Google Scholar
Hamasaki, A. et al. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the _Bcl-2_-related A1 gene. J. Exp. Med.188, 1985–1992 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K. & Korsmeyer, S. J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev.14, 23–27 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huang, D. C. S. & Strasser, A. BH3-only proteins — essential initiators of apoptotic cell death. Cell103, 839–842 (2000). ArticleCASPubMed Google Scholar
Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell93, 519–529 (1998).Discovery that the nematode genome also encodes a BH3-only protein that interacts with the Bcl2 homologue CED-9 and is essential for developmental cell death. ArticleCASPubMed Google Scholar
Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev.15, 1481–1486 (2001).Demonstration that apoptosis induced by diverse cytotoxic signals requires either Bax or Bak and that they act downstream of the BH3-only proteins. ArticleCASPubMedPubMed Central Google Scholar
Cheng, E. H. et al. BCL-2, BCL-xL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell8, 705–711 (2001). ArticleCASPubMed Google Scholar
Puthalakath, H., Huang, D. C. S., O'Reilly, L. A., King, S. M. & Strasser, A. The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell3, 287–296 (1999).Discovery that the BH3-only protein Bim is tethered to the microtubules in healthy cells and translocates to Bcl2 pro-survival proteins during apoptosis. ArticleCASPubMed Google Scholar
Puthalakath, H. et al. Bmf: a pro-apoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science293, 1829–1832 (2001). ArticleCASPubMed Google Scholar
Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-xL . Cell87, 619–628 (1996). ArticleCASPubMed Google Scholar
Li, H., Zhu, H., Xu, C.-J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998). ArticleCASPubMed Google Scholar
Luo, X., Budlhardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94, 481–490 (1998). ArticleCASPubMed Google Scholar
Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science288, 1053–1058 (2000). ArticleCASPubMed Google Scholar
Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell7, 673–682 (2001). ArticleCASPubMed Google Scholar
Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell7, 683–694 (2001). ArticleCASPubMed Google Scholar
Imaizumi, K. et al. Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J. Biol. Chem.272, 18842–18848 (1997). ArticleCASPubMed Google Scholar
Yin, X.-M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature400, 886–891 (1999). ArticleCASPubMed Google Scholar
Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999).Gene-knockout study reveals that the BH3-only protein Bim is a critical regulator of leukocyte homeostasis. ArticleCASPubMed Google Scholar
Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature415, 922–926 (2002). ArticleCASPubMed Google Scholar
Putcha, G. V. et al. Induction of Bim, a proapoptotic BH3-only Bcl-2 family member, is critical for neuronal apoptosis. Neuron29, 615–628 (2001). ArticleCASPubMed Google Scholar
Bouillet, P., Cory, S., Zhang, L.-C., Strasser, A. & Adams, J. M. Degenerative disorders caused by Bcl-2 deficiency are prevented by loss of its BH3-only antagonist Bim. Dev. Cell1, 645–653 (2001).The relative levels of BH3-only proteins and their pro-survival relatives is shown to be crucial in establishing the threshold for commitment of a cell to apoptosis and, therefore, for the control of tissue homeostasis. ArticleCASPubMed Google Scholar
Wang, K., Yin, X.-M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes Dev.10, 2859–2869 (1996). ArticleCASPubMed Google Scholar
Chou, J. J., Li, H., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell96, 615–624 (1999). ArticleCASPubMed Google Scholar
McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell96, 625–634 (1999). ArticleCASPubMed Google Scholar
Zha, J., Weiler, S., Oh, K. J., Wei, M. C. & Korsmeyer, S. J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science290, 1761–1765 (2000). ArticleCASPubMed Google Scholar
Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol.2, 754–761 (2000). ArticleCASPubMed Google Scholar
Madesh, M., Antonsson, B., Srinivasula, S. M., Alnemri, E. S. & Hajnóczky, G. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J. Biol. Chem.277, 5651–5659 (2002). ArticleCASPubMed Google Scholar
Grinberg, M. et al. tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem.277, 12237–12245 (2002). ArticleCASPubMed Google Scholar
Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell6, 1389–1399 (2000).Multiple developmental defects in mice lacking both Bax and Bak reveal that at least one of these proteins is required for stress-induced cell death. ArticleCASPubMedPubMed Central Google Scholar
Hsu, Y.-T. & Youle, R. J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem.273, 10777–10783 (1998). ArticleCASPubMed Google Scholar
Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H. & Youle, R. J. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol.153, 1265–1276 (2001). ArticleCASPubMedPubMed Central Google Scholar
Antonsson, B., Montessuit, S., Sanchez, B. & Martinou, J. C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem.276, 11615–11623 (2001). ArticleCASPubMed Google Scholar
Mikhailov, V. et al. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem.276, 18361–18374 (2001). ArticleCASPubMed Google Scholar
Nechushtan, A., Smith, C. L., Hsu, Y. T. & Youle, R. J. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J.18, 2330–2341 (1999). ArticleCASPubMedPubMed Central Google Scholar
Griffiths, G. J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol.144, 903–914 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tsujimoto, Y. & Shimizu, S. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ.7, 1174–1181 (2000). ArticleCASPubMed Google Scholar
Zamzami, N. & Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nature Rev. Mol. Cell Biol.2, 67–71 (2001). ArticleCAS Google Scholar
Antonsson, B. et al. Inhibition of Bax channel-forming activity by Bcl-2. Science277, 370–372 (1997). ArticleCASPubMed Google Scholar
Antonsson, B., Montessuit, S., Lauper, S., Eskes, R. & Martinou, J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J.345, 271–278 (2000). ArticleCASPubMedPubMed Central Google Scholar
Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol.2, 553–555 (2000). ArticleCASPubMed Google Scholar
Pavlov, E. V. et al. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol.155, 725–732 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chen, F. et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science287, 1485–1489 (2000). ArticleCASPubMed Google Scholar
del Peso, L., González, V. M., Inohara, N., Ellis, R. E. & Núñez, G. Disruption of the CED-9/CED-4 complex by EGL-1 is a critical step for programmed cell death in C. elegans. J. Biol. Chem.275, 27205–27211 (2000). ArticleCASPubMed Google Scholar
Parrish, J., Metters, H., Chen, L. & Xue, D. Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors. Proc. Natl Acad. Sci. USA97, 11916–11921 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene _ced_-9 encodes a functional homolog of the mammalian proto-oncogene _Bcl_-2. Cell76, 665–676 (1994). ArticleCASPubMed Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell90, 405–413 (1997). ArticleCASPubMed Google Scholar
Hausmann, G. et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-xL . J. Cell Biol.149, 623–634 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moriishi, K., Huang, D. C. S., Cory, S. & Adams, J. M. Bcl-2 family members do not inhibit apoptosis by binding the caspase-activator Apaf-1. Proc. Natl Acad. Sci. USA96, 9683–9688 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hu, Y., Ding, L., Spencer, D. M. & Núñez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem.273, 33489–33494 (1998). ArticleCASPubMed Google Scholar
Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science275, 1132–1136 (1997). ArticleCASPubMed Google Scholar
Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science275, 1129–1132 (1997). ArticleCASPubMed Google Scholar
Zhivotovsky, B., Samali, A., Gahm, A. & Orrenius, S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ.6, 644–651 (1999). ArticleCASPubMed Google Scholar
Dorstyn, L. et al. The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J. Cell Biol.156, 1089–1098 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zimmermann, K. C., Ricci, J. E., Droin, N. M. & Green, D. R. The role of ARK in stress-induced apoptosis in Drosophila cells. J. Cell Biol.156, 1077–1087 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homologue) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). ArticleCASPubMed Google Scholar
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). ArticleCASPubMed Google Scholar
Kuida, K. et al. Reduced apoptosis and cytochrome _c_-mediated caspase activation in mice lacking caspase 9. Cell94, 325–337 (1998). ArticleCASPubMed Google Scholar
Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell94, 339–352 (1998). ArticleCASPubMed Google Scholar
Honarpour, N. et al. Embryonic neuronal death due to neurotrophin and neurotransmitter deprivation occurs independent of Apaf-1. Neuroscience106, 263–274 (2001). ArticleCASPubMed Google Scholar
Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol.218, 248–258 (2000). ArticleCASPubMed Google Scholar
Hara, H. et al. The apoptotic protease-activating factor 1-mediated pathway of apoptosis is dispensable for negative selection of thymocytes. J. Immunol.168, 2288–2295 (2002). ArticleCASPubMed Google Scholar
Haraguchi, M. et al. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med.191, 1709–1720 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell101, 389–399 (2000). ArticleCASPubMed Google Scholar
Bossy-Wetzel, E., Newmeyer, D. D. & Green, D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J.17, 37–49 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gao, C. F. et al. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp. Cell Res.265, 145–151 (2001). ArticleCASPubMed Google Scholar
Rytömaa, M., Lehmann, K. & Downward, J. Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene19, 4461–4468 (2000). ArticlePubMed Google Scholar
Holinger, E. P., Chittenden, T. & Lutz, R. J. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome _c_-independent activation of caspases. J. Biol. Chem.274, 13298–13304 (1999). ArticleCASPubMed Google Scholar
Li, P.-F., Dietz, R. & von Harsdorf, R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome _c_-independent apoptosis blocked by Bcl-2. EMBO J.18, 6027–6036 (1999). ArticleCASPubMedPubMed Central Google Scholar
Von Ahsen, O., Waterhouse, N. J., Kuwana, T., Newmeyer, D. D. & Green, D. R. The 'harmless' release of cytochrome c. Cell Death Differ.7, 1192–1199 (2000). ArticleCASPubMed Google Scholar
Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Caspase-2 is required for stress-induced apoptosis and acts prior to mitochondrial permeabilization. Science (in the press).In certain cell lines, stress stimuli are shown to activate caspase-2 upstream of mitochondrial disruption. Together with other recent findings by Marsdenet al. (see text), this work argues strongly that Bcl2 function extends beyond guarding mitochondrial integrity and is likely to involve direct regulation of the activation of several initiator caspases.
Lee, S. T. et al. Bcl-2 targeted to the endoplasmic reticulum can inhibit apoptosis induced by Myc but not etoposide in Rat-1 fibroblasts. Oncogene18, 3520–3528 (1999). ArticleCASPubMed Google Scholar
Häcki, J. et al. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene19, 2286–2295 (2000). ArticlePubMed Google Scholar
Rudner, J. et al. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J. Cell Sci.114, 4161–4172 (2001). ArticleCASPubMed Google Scholar
Rao, R. V. et al. Coupling endoplasmic reticulum stress to the cell death program: an Apaf-1-independent intrinsic pathway. J. Biol. Chem.277, 21836–21842 (2002). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature403, 98–103 (2000). ArticleCASPubMed Google Scholar
Kilic, M., Schafer, R., Hoppe, J. & Kagerhuber, U. Formation of noncanonical high molecular weight caspase-3 and -6 complexes and activation of caspase-12 during serum starvation induced apoptosis in AKR-2B mouse fibroblasts. Cell Death Differ.9, 125–137 (2002). ArticleCASPubMed Google Scholar
Los, M., Wesselborg, S. & Schulze-Osthoff, K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity10, 629–639 (1999). ArticleCASPubMed Google Scholar
Adams, J. M. & Cory, S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. (in the press).
Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. & Alnemri, E. S. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem.277, 13430–13437 (2002). ArticleCASPubMed Google Scholar
Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol.150, 887–894 (2000). ArticleCASPubMedPubMed Central Google Scholar
Strasser, A., Harris, A. W. & Cory, S. Eμ-_bcl_-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene8, 1–9 (1993). CASPubMed Google Scholar
Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between Myc and _Bcl_-2. Nature348, 331–333 (1990).Firstin vivoevidence that Bcl2 is tumorigenic and can collaborate with Myc in tumour development. ArticleCASPubMed Google Scholar
Jager, R., Herzer, U., Schenkel, J. & Weiher, H. Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-_Myc_-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene15, 1787–1795 (1997). ArticleCASPubMed Google Scholar
Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev.10, 2105–2116 (1996). ArticleCASPubMed Google Scholar
Pelengaris, S., Khan, M. & I., E. G. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109, 321–334 (2002). ArticleCASPubMed Google Scholar
Kogan, S. C. et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor α chimeric protein (PMLRARα) to block neutrophil differentiation and initiate acute leukemia. J. Exp. Med.193, 531–543 (2001). ArticleCASPubMedPubMed Central Google Scholar
Packham, G. et al. Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Genes Dev.12, 2475–2487 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rampino, N. et al. Somatic frameshift mutations in the Bax gene in colon cancers of the microsatellite mutator phenotype. Science275, 967–969 (1997). ArticleCASPubMed Google Scholar
Kondo, S. et al. Mutations of the BAK gene in human gastric and colorectal cancers. Cancer Res.60, 4328–4330 (2000). CASPubMed Google Scholar
Meijerink, J. P. P. et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood91, 2991–2997 (1998). ArticleCASPubMed Google Scholar
McCurrach, M. E., Connor, T. M. F., Knudson, C. M., Korsmeyer, S. J. & Lowe, S. W. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl Acad. Sci. USA94, 2345–2349 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yin, C. Y., Knudson, C. M., Korsmeyer, S. J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature385, 637–640 (1997). ArticleCASPubMed Google Scholar
Ionov, Y., Yamamoto, H., Krajewski, S., Reed, J. C. & Perucho, M. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc. Natl Acad. Sci. USA97, 10872–10877 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grumont, R. J., Rourke, I. J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev.13, 400–411 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mayo, M. W. & Baldwin, A. S. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta1470, M55–M62 (2000). CASPubMed Google Scholar
Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol.2, 731–737 (2001). ArticleCAS Google Scholar
Strasser, A., Harris, A. W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell79, 329–339 (1994). ArticleCASPubMed Google Scholar
Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med.6, 1029–1035 (2000). ArticleCASPubMed Google Scholar
Sartorius, U. A. & Krammer, P. H. Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int. J. Cancer97, 584–592 (2002). ArticleCASPubMed Google Scholar
Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science290, 989–992 (2000). ArticleCASPubMed Google Scholar
Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature407, 810–816 (2000). ArticleCASPubMed Google Scholar
Wang, J. L. et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl Acad. Sci. USA97, 7124–7129 (2000). ArticleCASPubMedPubMed Central Google Scholar
Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL . Nature Cell Biol.3, 173–182 (2001). ArticleCASPubMed Google Scholar
Tzung, S. P. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biol.3, 183–191 (2001). ArticleCASPubMed Google Scholar
Huang, Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene19, 6627–6631 (2000). ArticleCASPubMed Google Scholar
Baell, J. B. & Huang, D. C. S. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem. Pharmacol. (in the press)
Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by _Myc_-induced suppression of Bcl-XL or Bcl-2 Is bypassed during lymphomagenesis. Mol. Cell. Biol.21, 5063–5070 (2001). ArticleCASPubMedPubMed Central Google Scholar
Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell9, 423–432 (2002). ArticleCASPubMed Google Scholar
Heibein, J. A. et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med.192, 1391–1402 (2000). ArticleCASPubMedPubMed Central Google Scholar
Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416, 560–564 (2002). ArticleCASPubMed Google Scholar
Strasser, A., Harris, A. W., Huang, D. C. S., Krammer, P. H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J.14, 6136–6147 (1995).Bcl2 was found to be unable to block apoptosis triggered by the newly discovered 'death-receptor' pathway, establishing that there are at least two distinct pathways to apoptosis in mammalian cells. ArticleCASPubMedPubMed Central Google Scholar
McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature349, 254–256 (1991). ArticleCASPubMed Google Scholar