Vogt, P. K. Jun, the oncoprotein. Oncogene20, 2365–2377 (2001).The discoverer of JUN presents an excellent summary of the first nuclear oncogene. ArticleCASPubMed Google Scholar
Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell1, 19–30 (2002).Authoritative account of the importance of apoptosis in cancer. ArticleCASPubMed Google Scholar
Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer. Science287, 1969–1973 (2000). ArticleCASPubMed Google Scholar
Biederer, C., Ries, S., Bandts, C. H. & McCormick, F. Replication-selective viruses for cancer therapy. J. Mol. Med.80, 163–175 (2002). ArticleCASPubMed Google Scholar
McCormick, F. Cancer gene therapy: fringe or cutting edge? Nature Rev. Cancer1, 130–141 (2001). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000).Widely quoted summary of the requirements to make a human cancer cell. ArticleCASPubMed Google Scholar
Bachur, N. R. in Encyclopedia of Cancer 2nd edn Vol. 1 (ed. Bertino, J. R.) 57–61 (Academic Press, 2002). Book Google Scholar
Tilley, W. D., Clarke, C. L., Birrell, S. N. & Bruchovsky, N. Hormones and cancer: new insights, new challenges. Trends Endocrinol. Metab.12, 186–188 (2001). ArticleCASPubMed Google Scholar
Barnes, P. J. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci.94, 557–572 (1998). ArticleCAS Google Scholar
Brivanlou, A. H. & Darnell, J. E. Jr., Signal transduction and the control of gene expression. Science295, 813–818 (2002). ArticleCASPubMed Google Scholar
Vogt, P. K., Bos, T. J. & Doolittle, R. F. Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun. Proc. Natl Acad. Sci. USA84, 3316–3319 (1987). ArticleCASPubMedPubMed Central Google Scholar
Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell76, 1025–1037 (1994). ArticleCASPubMed Google Scholar
Denhardt, D. T. Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy. Crit. Rev. Oncog.7, 261–291 (1996). ArticleCASPubMed Google Scholar
Stark, G. R., Kerrr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCASPubMed Google Scholar
Levy, D. & Darnell, J. E. Jr., STATs: transcriptional control and biologic impact. Nature Rev. Mol. Cell Biol.3, 651–662 (2002).Most up-to-date review of the STAT protein family, which is important in cancer. ArticleCAS Google Scholar
Groner, B. et al. Regulation of the trans-activation potential of STAT5 through its DNA-binding activity and interactions with heterologous transcription factors. Growth Horm. IGF Res.10 (Suppl. B), S15–S20 (2000). ArticlePubMed Google Scholar
Aittomaki, S. et al. Cooperation among Stat1, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes. J. Immunol.164, 5689–5697 (2000). ArticleCASPubMed Google Scholar
Look, D. C., Pelletier, M. R., Tidwell, R. M., Roswit, W. T. & Holtzman, M. J. Stat1 depends on transcriptional synergy with Sp1. J. Biol. Chem.270, 30264–30267 (1995). ArticleCASPubMed Google Scholar
Zhang, X., Wrzeszczynaska, M. H., Horvath, C. M. & Darnell, J. E. Jr., Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol.19, 7138–7146 (1999). ArticleCASPubMedPubMed Central Google Scholar
Starr, R. & Hilton, D. J. Negative regulation of the JAK/STAT pathway. Bioessays21, 47–52 (1999).Authoritative summary of how cells switch off this important signalling pathway. ArticleCASPubMed Google Scholar
Aoki, N. & Matsuda, T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol. Endocrinol.16, 58–69 (2002). ArticleCASPubMed Google Scholar
Shuai, K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene19, 2638–2644 (2000). ArticleCASPubMed Google Scholar
Yu, C. L. et al. Enhanced DNA-binding of a Stat3-related protein in cells transformed by the Src oncoprotein. Science269, 81–83 (1995). ArticleCASPubMed Google Scholar
Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene19, 2474–2488 (2000). ArticleCASPubMed Google Scholar
Takeda, K. et al. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell- specific Stat3-deficient mice. J. Immunol.161, 4652–4660 (1998). CASPubMed Google Scholar
Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10, 39–49 (1999). ArticleCASPubMed Google Scholar
Shen, Y., Devgan, G., Darnell, J. E. Jr, & Bromberg, J. F. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl Acad. Sci. USA98, 1543–1548 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lacaronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278, 1309–1312 (1997). Article Google Scholar
Lacronique, V. et al. Transforming properties of chimeric TEL–JAK proteins in Ba/F3 cells. Blood95, 2076–2083 (200).
Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene19, 2489–2495 (2000).Importance of persistently active STAT3 in human cancer. ArticleCASPubMed Google Scholar
Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity10, 105–115 (1999). ArticleCASPubMed Google Scholar
Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nature Genet.28, 29–35 (2001). CASPubMed Google Scholar
Zhang, Q. et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immun.168, 466–474 (2002).References36–38provide evidence of the importance of STAT3 in clinical cancer. ArticleCASPubMed Google Scholar
Perkins, N. D. The Rel/NF-κB family: friend and foe. Trends Biochem. Sci.25, 434–440 (2000). ArticleCASPubMed Google Scholar
Sen, R. & Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell47, 921–928 (1986). ArticleCASPubMed Google Scholar
Tam, W. F., Wang, W. & Sen, R. Cell-specific association and shuttling of IκBα provides a mechanism for nuclear NF-κB in B lymphocytes. Mol. Cell. Biol.21, 4837–4846 (2001). ArticleCASPubMedPubMed Central Google Scholar
Song, H. Y., Rothe, M. & Goeddel, D. V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci. USA93, 6721–6725 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thanos, D. & Maniatis, T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell83, 1091–1101 (1995).Early description of the protein complex that functions as the enhanceosome. ArticleCASPubMed Google Scholar
Rayet, B. & Gelinas, C. Aberrant REL/NF-κB genes and activity in human cancer. Oncogene18, 6938–6947 (1999). ArticleCASPubMed Google Scholar
Ni, H. et al. Analysis of expression of nuclear factor B (NF-κB) in multiple myeloma: downregulation of NF-κB induces apoptosis. Br. J. Haematol.115, 279–286 (2001). ArticleCASPubMed Google Scholar
Izban, K. F. et al. Characterization of NF-κB expression in Hodgkin's disease: inhibition of constitutively expressed NF-κB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed–Sternberg cells. Mod. Pathol.14, 297–310 (2001). ArticleCASPubMed Google Scholar
Kim, D. W. et al. Activation of NF-κB/REL occurs early during neoplastic transformation of mammary cells. Carcinogenesis21, 871–879 (2000). ArticlePubMed Google Scholar
Tai, D. I. et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer89, 2274–2281 (2000). ArticleCASPubMed Google Scholar
Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature411, 349–354 (2001).Excellent review of two signalling pathways and how they might connect to human cancer. ArticleCASPubMed Google Scholar
Barish, G. D. & Williams, B. O. in Signaling Networks and Cell Cycle Control (ed. Gutkind, J. S) 53–82 (2000). Book Google Scholar
Kolligs, F. T. et al. Gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev.14, 1319–1331 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wong, C. M., Fan, S. T. & Ng, I. O. L. Beta-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer92, 136–145 (2001). ArticleCASPubMed Google Scholar
van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell88, 789–799 (1997). ArticleCASPubMed Google Scholar
Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell109, 47–60 (2002). ArticleCASPubMed Google Scholar
Parker, D. S., Jemison, J. & Cadigan, K. M. Nucleotide Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development129, 2565–2576 (2002). ArticleCASPubMed Google Scholar
Thompson, B., Townsley, F., Rosin-Arbesfeld, R., Musisi, H. & Bienz, M. A new nuclear component of the Wnt signalling pathway. Nature Cell Biol.4, 367–373 (2002). ArticleCASPubMed Google Scholar
Hovanes, K. et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature Genet.28, 53–57 (2001). CASPubMed Google Scholar
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCASPubMed Google Scholar
Weinmaster, G. Notch signal transduction: a real Rip and more. Curr. Opin. Genet. Dev.10, (2000).Authoritative summary of Notch signalling.
Davis, R. L. & Turner, D. L. Vertebrate Hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene20, 8342–9357 (2001). ArticleCASPubMed Google Scholar
Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature377, 355–358 (1995). ArticleCASPubMed Google Scholar
Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661 (1991).Connects theNotchpathway to human cancer. ArticleCASPubMed Google Scholar
Callahan, D. & Callahan, R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene14, 1883–1890 (1997). ArticlePubMedCAS Google Scholar
Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol.17, 6265–6273 (1997). ArticleCASPubMedPubMed Central Google Scholar
Jang, M. S., Zlobin, A., Kast, W. M. & Miele, L. Notch signaling as a target in multimodality cancer therapy. Curr. Opin. Mol. Ther.2, 55–65 (2000). CASPubMed Google Scholar
Fitzgerald, K., Harrington, A. & Leder, P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene19, 4191–4198 (2000). ArticleCASPubMed Google Scholar
Price, M. A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell108, 823–835 (2002). ArticleCASPubMed Google Scholar
Ruiz i Altaba, A. Gli proteins and Hedgehog in signalling. Trends Genet.15, 418–425 (1999).Connects human cancer with theHedgehogpathway. ArticleCASPubMed Google Scholar
Cheng, S. Y. & Bishop, J. M. Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18–mSin3 corepressor complex. Proc. Natl Acad. Sci. USA99, 5442–5447 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell100, 423–434 (2000). ArticleCASPubMed Google Scholar
Riefenberger, J. et al. Missense mutations in SMO in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58, 1798–1803 (1998). Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997). ArticleCASPubMed Google Scholar
Hahn, H. et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nature Med.4, 619–622 (1998). ArticleCASPubMed Google Scholar
van Dam, H. & Castelazzi, M. Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene20, 2453–2464 (2001). ArticleCASPubMed Google Scholar
Hartl, M. & Vogt, P. K. A rearranged junD transforms chicken embryo fibroblasts. Cell Growth Differ.3, 909–918 (1992). CASPubMed Google Scholar
Vandel, L. et al. Stepwise transformation of rat embryo fibroblasts: c-Jun, JunB, or JunD can cooperate with Ras for focus formation, but a c-Jun-containing heterodimer is required for immortalization. Mol. Cell. Biol.16, 1881–1888 (1996).Emphasizes the importance of multiple events in tumorigenesis. ArticleCASPubMedPubMed Central Google Scholar
Gille, H., Strahl, T. & Shaw, P. E. Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr. Biol.5, 1191–1200 (1995). ArticleCASPubMed Google Scholar
Davidson, B. et al. Ets-1 messenger RNA expression is a novel marker of poor survival in ovarian carcinoma. Clin. Cancer Res.7, 551–557 (2001). CASPubMed Google Scholar
Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem.68, 821–861 (1999).Excellent summary of CREB — one of the most well-studied transcription factors. ArticleCASPubMed Google Scholar
Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell97, 727–741 (1999). ArticleCASPubMed Google Scholar
Gilliland, D. G. The diverse role of the ETS family of transcription factors in cancer. Clin. Cancer Res.7, 451–453 (2001). CASPubMed Google Scholar
Nesbit, C. E., Tersak, J. M. & Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene18, 3004–3016 (1999). ArticleCASPubMed Google Scholar
Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol.16, 653–699 (2000).Discoverer of MYC transcriptional activity provides up-to-date summary. ArticleCASPubMed Google Scholar
Wu, L. et al. The E2F1-3transcription factors are essential for cellular proliferation. Nature414, 457–462 (2001). ArticleCASPubMed Google Scholar
Eymin, B., Gazzeri, S., Brambilla, C. & Brambilla, E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small-cell-lung carcinoma. Oncogene20, 1678–1687 (2001). ArticleCASPubMed Google Scholar
Perou, C. M. et al. Molecular portraits of human breast tumours. Nature406, 747–752 (2000).Among one of the first comprehensive gene-array reports: strengths and weaknesses discussed. ArticleCASPubMed Google Scholar
Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med.346, 1937–1947 (2002). ArticlePubMed Google Scholar
Davis, R. E. & Staudt, L. M. Molecular diagnosis of lymphoid malignancies by gene expression profiling. Curr. Opin. Hematol.9, 333–338 (2002). ArticlePubMed Google Scholar
Abbott, A. News Feature: On the offensive. Nature416, 470–474 (2002).Summary of where cancer pharmacology stands now. ArticleCASPubMed Google Scholar
Malik, H. S., Eickbush, T. H. & Goldfarb, D. S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl Acad. Sci. USA94, 13738–13742 (1997). ArticleCASPubMedPubMed Central Google Scholar
Malik, S. & Roeder, R. G. Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci.25, 277–283 (2000). ArticleCASPubMed Google Scholar
Park, H. S., Lin, Q. & Hamilton, A. D. Supramolecular chemistry and self-assembly special feature: modulation of protein–protein interactions by synthetic receptors. Design of molecules that disrupt serine protease-proteinaceous inhibitor interaction. Proc. Natl Acad. Sci. USA99, 5105–5109 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ohkanda, J., Knowles, D. B., Blaskovich, M. A., Sebti, S. M. & Hamilton, A. D. Inhibitors of protein farnesyltransferase as novel anticancer agents. Curr. Top. Med. Chem.2, 303–323 (2002). ArticleCASPubMed Google Scholar
Peczuh, M. W. & Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev.100, 2479–2494 (2000). ArticleCASPubMed Google Scholar
Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell99, 103–115 (1999). ArticleCASPubMed Google Scholar
Berg, T. et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA99, 3830–3835 (2002).First description of a small molecule that inhibits transcription-factor dimerization. ArticleCASPubMedPubMed Central Google Scholar
McBride, K. M., Banninger, G., McDonald, C. & Reich, N. C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J.21, 1754–1763 (2002). ArticleCASPubMedPubMed Central Google Scholar
Haspel, R. L. & Darnell, J. E. Jr. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl Acad. Sci. USA96, 10188–10193 (1999). ArticleCASPubMedPubMed Central Google Scholar