Cell death assays for drug discovery (original) (raw)
Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer5, 231–237 (2005). Article Google Scholar
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol.1, 112–119 (2005). Based on HTS of a small-molecule library, this article identifies necrostatin 1 as a specific inhibitor of necroptosis that works through the inhibition of RIPK1. ArticleCAS Google Scholar
Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.16, 3–11 (2009). This article provides up-to-date guidelines for the use of cell death-related terminology in scientific publications, as provided by the Nomenclature Committee on Cell Death, an organization comprising reputed researchers in the field of cell death worldwide. ArticleCASPubMed Google Scholar
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol.11, 700–714 (2010). This review provides the first detailed analysis of the molecular mechanisms that underlie programmed necrosis and its pathophysiological implications. ArticleCAS Google Scholar
Grumati, P. et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nature Med.16, 1313–1320 (2010). ArticleCASPubMed Google Scholar
Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med.13, 54–61 (2007). ArticleCASPubMed Google Scholar
Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell140, 798–804 (2010). A comprehensive review summarizing the latest insights in the field of immunogenic cell death. ArticleCASPubMed Google Scholar
Guidicelli, G. et al. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells. PLoS One4, e5493 (2009). ArticleCASPubMedPubMed Central Google Scholar
Galluzzi, L. et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ.16, 1093–1107 (2009). This review provides a comprehensive set of guidelines for assessing cell death in mammalian cells. ArticleCASPubMed Google Scholar
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy4, 151–175 (2008). This review provides a comprehensive set of guidelines for measuring autophagy in mammalian cells. ArticleCASPubMed Google Scholar
Kerr, J. F. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J. Pathol. Bacteriol.90, 419–435 (1965). ArticleCASPubMed Google Scholar
Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239–257 (1972). ArticleCASPubMedPubMed Central Google Scholar
Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene23, 2825–2837 (2004). ArticleCASPubMed Google Scholar
Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell131, 966–979 (2007). ArticleCASPubMed Google Scholar
Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol.38, 31–40 (2000). ArticleCASPubMed Google Scholar
Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci.1147, 233–241 (2008). ArticleCASPubMed Google Scholar
Gilloteaux, J. et al. Cancer cell necrosis by autoschizis: synergism of antitumor activity of vitamin C: vitamin K3 on human bladder carcinoma T24 cells. Scanning20, 564–575 (1998). ArticleCASPubMed Google Scholar
Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology7, 253–266 (1973). ArticleCASPubMed Google Scholar
Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature Rev. Mol. Cell Biol.9, 1004–1010 (2008). ArticleCAS Google Scholar
Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell131, 1137–1148 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lemasters, J. J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta1366, 177–196 (1998). ArticleCASPubMed Google Scholar
Berridge, M. V., Herst, P. M. & Tan, A. S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev.11, 127–152 (2005). ArticleCASPubMed Google Scholar
Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell135, 1311–1323 (2008). This was the first time systems biology was applied to compare necroptosis to apoptosis in murine cells. Genome-wide RNAi-based screens coupled toin silicoandin vitroanalyses allowed the delineation of a signalling network that regulates the molecular bifurcation between necroptosis and apoptosis. ArticleCASPubMedPubMed Central Google Scholar
Arora, S. et al. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma. Mol. Cancer9, 218 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zeng, F. Y., Cui, J., Liu, L. & Chen, T. PAX3–FKHR sensitizes human alveolar rhabdomyosarcoma cells to camptothecin-mediated growth inhibition and apoptosis. Cancer Lett.284, 157–164 (2009). ArticleCASPubMedPubMed Central Google Scholar
Atienza, J. M., Zhu, J., Wang, X., Xu, X. & Abassi, Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen.10, 795–805 (2005). ArticleCASPubMed Google Scholar
Solly, K., Wang, X., Xu, X., Strulovici, B. & Zheng, W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev. Technol.2, 363–372 (2004). ArticleCASPubMed Google Scholar
Xing, J. Z. et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol.18, 154–161 (2005). ArticleCASPubMed Google Scholar
Xia, M. et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect.116, 284–291 (2008). ArticleCASPubMed Google Scholar
Metivier, D. et al. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol. Lett.61, 157–163 (1998). ArticleCASPubMed Google Scholar
Shiau, A. K., Massari, M. E. & Ozbal, C. C. Back to basics: label-free technologies for small molecule screening. Comb. Chem. High Throughput Screen.11, 231–237 (2008). ArticleCASPubMed Google Scholar
Lipinski, M. M. et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell18, 1041–1052 (2010). This screen identifies multiple starvation-independent autophagy-relevant genes. This paper is also a good example of the use of secondary HTS to characterize autophagy flux and upstream autophagic pathways. ArticleCASPubMedPubMed Central Google Scholar
Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature464, 721–727 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stilwell, G. E., Saraswati, S., Littleton, J. T. & Chouinard, S. W. Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur. J. Neurosci.24, 2211–2222 (2006). ArticlePubMed Google Scholar
Evensen, L., Link, W. & Lorens, J. B. Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr. Pharm. Des.16, 3958–3963 (2010). ArticleCASPubMed Google Scholar
Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol.8, 741–752 (2007). ArticleCAS Google Scholar
Galluzzi, L. et al. No death without life: vital functions of apoptotic effectors. Cell Death Differ.15, 1113–1123 (2008). ArticleCASPubMed Google Scholar
Cen, H., Mao, F., Aronchik, I., Fuentes, R. J. & Firestone, G. L. DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. FASEB J.22, 2243–2252 (2008). ArticleCASPubMed Google Scholar
Tyas, L., Brophy, V. A., Pope, A., Rivett, A. J. & Tavare, J. M. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep.1, 266–270 (2000). ArticleCASPubMedPubMed Central Google Scholar
Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol.3, 339–345 (2001). ArticleCASPubMed Google Scholar
Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature467, 863–867 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med.182, 1545–1556 (1995). ArticleCASPubMed Google Scholar
Zwaal, R. F., Comfurius, P. & Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci.62, 971–988 (2005). ArticleCASPubMed Google Scholar
Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell128, 931–946 (2007). ArticleCASPubMed Google Scholar
Fischer, K. et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood108, 4094–4101 (2006). ArticleCASPubMed Google Scholar
Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.87, 99–163 (2007). This review provides a comprehensive analysis of the mitochondrial pathway of cell death and its multifaceted implications in human physiology and pathology. ArticleCASPubMed Google Scholar
Galluzzi, L. et al. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis12, 803–813 (2007). ArticleCASPubMed Google Scholar
Zamzami, N. et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med.182, 367–377 (1995). ArticleCASPubMed Google Scholar
Campalans, A., Amouroux, R., Bravard, A., Epe, B. & Radicella, J. P. UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles. J. Cell Sci.120, 23–32 (2007). ArticleCASPubMed Google Scholar
Lipinski, M. M. et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Natl Acad. Sci. USA107, 14164–14169 (2010). ArticlePubMedPubMed Central Google Scholar
Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol.2, 156–162 (2000). ArticleCASPubMed Google Scholar
Clarke, M. C., Savill, J., Jones, D. B., Noble, B. S. & Brown, S. B. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J. Cell Biol.160, 577–587 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jakobs, S. High resolution imaging of live mitochondria. Biochim. Biophys. Acta1763, 561–575 (2006). ArticleCASPubMed Google Scholar
Zoratti, M. & Szabo, I. The mitochondrial permeability transition. Biochim. Biophys. Acta1241, 139–176 (1995). ArticlePubMed Google Scholar
Stavrovskaya, I. G. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med.200, 211–222 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lim, T. S., Davila, A., Wallace, D. C. & Burke, P. Assessment of mitochondrial membrane potential using an on-chip microelectrode in a microfluidic device. Lab. Chip10, 1683–1688 (2010). ArticleCASPubMedPubMed Central Google Scholar
Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene27, 285–299 (2008). ArticleCASPubMed Google Scholar
Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86, 147–157 (1996). ArticleCASPubMed Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell90, 405–413 (1997). ArticleCASPubMed Google Scholar
Hampton, M. B., Zhivotovsky, B., Slater, A. F., Burgess, D. H. & Orrenius, S. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem. J.329, 95–99 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jiang, X. et al. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science299, 223–226 (2003). ArticleCASPubMed Google Scholar
Kim, H. E., Jiang, X., Du, F. & Wang, X. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol. Cell30, 239–247 (2008). ArticleCASPubMed Google Scholar
Santamaria, B. et al. A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury. PLoS One4, e6634 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, G. R., Moerke, N. J., Hsia, M., Shamu, C. E. & Blenis, J. A high-throughput, cell-based screening method for siRNA and small molecule inhibitors of mTORC1 signaling using the in cell western technique. Assay Drug Dev. Technol.8, 186–199 (2010). ArticleCASPubMedPubMed Central Google Scholar
MacDonald, M. L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chem. Biol.2, 329–337 (2006). ArticleCAS Google Scholar
Galluzzi, L. et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res.70, 1793–1803 (2010). ArticleCASPubMed Google Scholar
Sirisoma, N. et al. Discovery of 2-chloro-_N_-(4-methoxyphenyl)-_N_-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J. Med. Chem.51, 4771–4779 (2008). ArticleCASPubMed Google Scholar
Irshad, S., Mahul-Mellier, A. L., Kassouf, N., Lemarie, A. & Grimm, S. Isolation of ORCTL3 in a novel genetic screen for tumor-specific apoptosis inducers. Cell Death Differ.16, 890–898 (2009). ArticleCASPubMed Google Scholar
Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 13 Dec 2010 (doi:10.1038/onc.2010.500).
Madeo, F., Tavernarakis, N. & Kroemer, G. Can autophagy promote longevity? Nature. Cell Biol.12, 842–846 (2010). ArticleCASPubMed Google Scholar
Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest.117, 326–336 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ni, H. M. et al. Dissecting the dynamic turnover of GFP–LC3 in the autolysosome. Autophagy7, 54–70 (2011). ArticleCAS Google Scholar
Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol.4, 295–305 (2008). ArticleCAS Google Scholar
Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA104, 19023–19028 (2007). ArticlePubMedPubMed Central Google Scholar
Criollo, A. et al. The IKK complex contributes to the induction of autophagy. EMBO J.29, 619–631 (2010). ArticleCASPubMed Google Scholar
Farkas, T., Hoyer-Hansen, M. & Jaattela, M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy5, 1018–1025 (2009). ArticleCASPubMed Google Scholar
Ju, J. S. et al. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy5, 511–519 (2009). ArticleCASPubMed Google Scholar
Shvets, E., Fass, E. & Elazar, Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy4, 621–628 (2008). ArticleCASPubMed Google Scholar
He, P. et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy5, 52–60 (2009). ArticleCASPubMed Google Scholar
Balgi, A. D. et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One4, e7124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol.3, 331–338 (2007). This paper describes a successful small-molecule screen for autophagy in yeast, which identified three conserved novel autophagy enhancers (from a library of 50,729 compounds) that act independently or downstream of the rapamycin target in human cells. ArticleCAS Google Scholar
Kanki, T. et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell20, 4730–4738 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tian, Y. et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell141, 1042–1055 (2010). ArticleCASPubMed Google Scholar
Arsham, A. M. & Neufeld, T. P. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy–lysosome pathway. PLoS One4, e6068 (2009). ArticleCASPubMedPubMed Central Google Scholar
Morvan, J. et al. In vitro reconstitution of fusion between immature autophagosomes and endosomes. Autophagy5, 676–689 (2009). ArticleCASPubMed Google Scholar
Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem.279, 40584–40592 (2004). ArticleCASPubMed Google Scholar
Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature446, 815–819 (2007). ArticleCASPubMed Google Scholar
Bianchi, M. E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science243, 1056–1059 (1989). ArticleCASPubMed Google Scholar
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418, 191–195 (2002). ArticleCASPubMed Google Scholar
Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J.22, 5551–5560 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bell, C. W., Jiang, W., Reich, C. F., & Pisetsky, D. S. The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol.291, C1318–C1325 (2006). ArticleCASPubMed Google Scholar
Christofferson, D. E. & Yuan, J. Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ.17, 1942–1943 (2010). ArticleCASPubMed Google Scholar
Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J. & Speicher, D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science226, 544–547 (1984). ArticleCASPubMed Google Scholar
Li, J. et al. Strategy for discovering chemical inhibitors of human cyclophilin A: focused library design, virtual screening, chemical synthesis and bioassay. J. Comb. Chem.8, 326–337 (2006). ArticleCASPubMed Google Scholar
Ni, S. et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. J. Med. Chem.52, 5295–5298 (2009). ArticleCASPubMed Google Scholar
Kullertz, G., Luthe, S. & Fischer, G. Semiautomated microtiter plate assay for monitoring peptidylprolyl cis/trans isomerase activity in normal and pathological human sera. Clin. Chem.44, 502–508 (1998). CASPubMed Google Scholar
Mori, T. et al. Use of a real-time fluorescence monitoring system for high-throughput screening for prolyl isomerase inhibitors. J. Biomol. Screen.14, 419–424 (2009). ArticleCASPubMed Google Scholar
Jin, Z. G. et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler. Thromb. Vasc. Biol.24, 1186–1191 (2004). ArticleCASPubMed Google Scholar
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol.4, 313–321 (2008). ArticleCAS Google Scholar
Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol.22, 263–268 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature463, 549–553 (2010). ArticleCASPubMed Google Scholar
Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ.15, 1153–1162 (2008). ArticleCASPubMed Google Scholar
Weaver, B. A. & Cleveland, D. W. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell8, 7–12 (2005). ArticleCASPubMed Google Scholar
Olsson, M. et al. DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene28, 1949–1959 (2009). ArticleCASPubMed Google Scholar
Tu, S. et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biol.8, 72–77 (2006). ArticleCASPubMed Google Scholar
Vakifahmetoglu, H. et al. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ.15, 555–566 (2008). ArticleCASPubMed Google Scholar
Rello-Varona, S. et al. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. Cell Death Dis.1, e25 (2010). This was the first approach towards an automated high-throughput image-based assessment of mitotic catastrophe by means of fluorescent biosensors utilized in robotized microscopy. ArticleCASPubMedPubMed Central Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–730 (2002). ArticleCAS Google Scholar
Duan, Z., Choy, E. & Hornicek, F. J. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance. PLoS One4, e7415 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yoon, I. S., Au, Q., Barber, J. R., Ng, S. C. & Zhang, B. Development of a high-throughput screening assay for cytoprotective agents in rotenone-induced cell death. Anal. Biochem.407, 205–210 (2010). ArticleCASPubMed Google Scholar
Muzzey, D. & van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol.25, 301–327 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhao, L. et al. Analysis of nonadherent apoptotic cells by a quantum dots probe in a microfluidic device for drug screening. Anal. Chem.81, 7075–7080 (2009). ArticleCASPubMed Google Scholar
Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nature Biotech.24, 167–175 (2006). ArticleCAS Google Scholar
Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol.6, 1221–1228 (2004). ArticleCASPubMed Google Scholar
Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med.13, 1050–1059 (2007). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009). ArticleCASPubMed Google Scholar
Lum, J. J., DeBerardinis, R. J. & Thompson, C. B. Autophagy in metazoans: cell survival in the land of plenty. Nature Rev. Mol. Cell Biol.6, 439–448 (2005). ArticleCAS Google Scholar