Mudhakir, D. & Harashima, H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J.11, 65–77 (2009). ArticlePubMedPubMed Central Google Scholar
Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol.3, 1033–1040 (2002). ArticleCAS Google Scholar
Wells, J. M. & Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Rev. Microbiol.6, 349–362 (2008). An overview of the use of recombinant GRAS bacteria for drug delivery. ArticleCAS Google Scholar
Wells, J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu. Rev. Food Sci. Technol.2, 423–445 (2011). ArticleCASPubMed Google Scholar
Yuvaraj, S., Peppelenbosch, M. P. & Bos, N. A. Transgenic probiotica as drug delivery systems: the golden bullet? Expert Opin. Drug Deliv.4, 1–3 (2007). ArticleCASPubMed Google Scholar
Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotech.21, 785–789 (2003). ArticleCAS Google Scholar
Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin10. Science289, 1352–1355 (2000). This study demonstrated thein vivodelivery of therapeutic proteins that were produced by recombinant bacteria for the treatment of a specific disease. ArticleCASPubMed Google Scholar
Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin10 in Crohn's disease. Clin. Gastroenterol. Hepatol.4, 754–759 (2006). ArticleCASPubMed Google Scholar
Caluwaerts, S. et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol.46, 564–570 (2010). ArticleCASPubMed Google Scholar
Ricci, S. et al. In vivo mucosal delivery of bioactive human interleukin 1 receptor antagonist produced by Streptococcus gordonii. BMC Biotechnol.3, 15 (2003). ArticlePubMedPubMed Central Google Scholar
Porzio, S., Bossu, P., Ruggiero, P., Boraschi, D. & Tagliabue, A. Mucosal delivery of anti-inflammatory IL1-Ra by sporulating recombinant bacteria. BMC Biotechnol.4, 27 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Pusch, O. et al. Bioengineering lactic acid bacteria to secrete the HIV1 virucide cyanovirin. J. Acquir. Immune Defic. Syndr.40, 512–520 (2005). ArticleCASPubMed Google Scholar
Pusch, O. et al. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV1 fusion inhibitors by lactobacilli. AIDS20, 1917–1922 (2006). ArticleCASPubMed Google Scholar
Liu, X. et al. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob. Agents Chemother.50, 3250–3259 (2006). ArticleCASPubMedPubMed Central Google Scholar
Robinson, K. et al. Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect. Immun.72, 2753–2761 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hanniffy, S. B., Carter, A. T., Hitchin, E. & Wells, J. M. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J. Infect. Dis.195, 185–193 (2007). ArticleCASPubMed Google Scholar
Poo, H. et al. Oral administration of human papilloma virus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer119, 1702–1709 (2006). ArticleCASPubMed Google Scholar
Mohamadzadeh, M., Duong, T., Sandwick, S. J., Hoover, T. & Klaenhammer, T. R. Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc. Natl Acad. Sci. USA106, 4331–4336 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cheminay, C. & Hensel, M. Rational design of Salmonella recombinant vaccines. Int. J. Med. Microbiol.298, 87–98 (2008). ArticleCASPubMed Google Scholar
Pawelek, J. M., Low, K. B. & Bermudes, D. Bacteria as tumour-targeting vectors. Lancet Oncol.4, 548–556 (2003). ArticlePubMed Google Scholar
King, I. et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther.13, 1225–1233 (2002). ArticleCASPubMed Google Scholar
Low, K. B. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature Biotech.17, 37–41 (1999). ArticleCAS Google Scholar
Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res.57, 4537–4544 (1997). CASPubMed Google Scholar
Schlechte, H. & Elbe, B. Recombinant plasmid DNA variation of Clostridium oncolyticum — model experiments of cancerostatic gene transfer. Zentralbl. Bakteriol. Mikrobiol. Hyg. A268, 347–356 (1988). CASPubMed Google Scholar
Jiang, Z. et al. Using attenuated Salmonella typhi as tumor targeting vector for MDR1 siRNA delivery. Cancer Biol. Ther.6, 555–560 (2007). ArticleCASPubMed Google Scholar
Zhang, L. et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res.67, 5859–5864 (2007). ArticleCASPubMed Google Scholar
Xiang, S., Fruehauf, J. & Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nature Biotech.24, 697–702 (2006). This study demonstrated that RNAi mediated by recombinant bacteria induces gene silencing in mammalian cells. ArticleCAS Google Scholar
Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnol.2, 441–449 (2007). This was a report on a novel technique for delivering nanoparticles, which are carried on the bacterial surface. ArticleCAS Google Scholar
Witte, A., Wanner, G., Sulzner, M. & Lubitz, W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol.157, 381–388 (1992). ArticleCASPubMed Google Scholar
Lubitz, P., Mayr, U. B. & Lubitz, W. Applications of bacterial ghosts in biomedicine. Adv. Exp. Med. Biol.655, 159–170 (2009). ArticleCASPubMed Google Scholar
Kudela, P. et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J. Immunother.28, 136–143 (2005). ArticleCASPubMed Google Scholar
Paukner, S. et al. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther.11, 215–223 (2005). ArticleCASPubMed Google Scholar
Paukner, S., Kohl, G. & Lubitz, W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco2 cells. J. Control Release94, 63–74 (2004). ArticleCASPubMed Google Scholar
Talebkhan, Y. et al. Helicobacter pylori bacterial ghost containing recombinant Omp18 as a putative vaccine. J. Microbiol. Methods82, 334–337 (2010). ArticleCASPubMed Google Scholar
Eko, F. O., Talin, B. A. & Lubitz, W. Development of a Chlamydia trachomatis bacterial ghost vaccine to fight human blindness. Hum. Vaccin.4, 176–183 (2008). ArticleCASPubMed Google Scholar
Kudela, P., Koller, V. J. & Lubitz, W. Bacterial ghosts (BGs) — advanced antigen and drug delivery system. Vaccine28, 5760–5767 (2010). ArticleCASPubMed Google Scholar
van Roosmalen, M. L. et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods38, 144–149 (2006). ArticleCASPubMed Google Scholar
Audouy, S. A. et al. Development of lactococcal GEM-based pneumococcal vaccines. Vaccine25, 2497–2506 (2007). ArticleCASPubMed Google Scholar
Nuyts, S. et al. Clostridium spores for tumor-specific drug delivery. Anticancer Drugs13, 115–125 (2002). ArticleCASPubMed Google Scholar
Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol.20, 142–152 (2002). ArticlePubMed Google Scholar
Schnierle, B. S. et al. Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc. Natl Acad. Sci. USA94, 8640–8645 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pereboev, A. V. et al. Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol. Ther.9, 712–720 (2004). ArticleCASPubMed Google Scholar
Everts, M. et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett.6, 587–591 (2006). This was a demonstration of the use of gold nanoparticles that were attached to the surface of a viral vector for selective delivery to tumour cells, thus implicating the possibility of photothermal therapy and gene therapy as a combinational therapeutic approach. ArticleCASPubMed Google Scholar
Saini, V. et al. An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles. Small4, 262–269 (2008). ArticleCASPubMed Google Scholar
Huh, Y. et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater.19, 3109–3112 (2007). ArticleCAS Google Scholar
You, J. O., Liu, Y. S., Liu, Y. C., Joo, K. I. & Peng, C. A. Incorporation of quantum dots on virus in polycationic solution. Int. J. Nanomedicine1, 59–64 (2006). ArticleCASPubMedPubMed Central Google Scholar
Villa, L. L. et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol.6, 271–278 (2005). ArticlePubMed Google Scholar
Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med.356, 1928–1943 (2007). ArticleCASPubMed Google Scholar
Wang, M. et al. Inhibition of simian virus 40 large tumor antigen expression in human fetal glial cells by an antisense oligodeoxynucleotide delivered by the JC virus-like particle. Hum. Gene Ther.15, 1077–1090 (2004). ArticleCASPubMed Google Scholar
Henke, S., Rohmann, A., Bertling, W. M., Dingermann, T. & Zimmer, A. Enhanced in vitro oligonucleotide and plasmid DNA transport by VP1 virus-like particles. Pharm. Res.17, 1062–1070 (2000). ArticleCASPubMed Google Scholar
Pattenden, L. K., Middelberg, A. P., Niebert, M. & Lipin, D. I. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol.23, 523–529 (2005). ArticleCASPubMed Google Scholar
Datta, A. et al. High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. J. Am. Chem. Soc.130, 2546–2552 (2008). ArticleCASPubMed Google Scholar
Tong, G. J., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc.131, 11174–11178 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hooker, J. M., O'Neil, J. P., Romanini, D. W., Taylor, S. E. & Francis, M. B. Genome-free viral capsids as carriers for positron emission tomography radiolabels. Mol. Imaging Biol.10, 182–191 (2008). ArticlePubMed Google Scholar
Wu, W., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. Engl.48, 9493–9497 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takamura, S. et al. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther.11, 628–635 (2004). ArticleCASPubMed Google Scholar
May, T., Gleiter, S. & Lilie, H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J. Virol. Methods105, 147–157 (2002). ArticleCASPubMed Google Scholar
Manchester, M. & Singh, P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev.58, 1505–1522 (2006). ArticleCASPubMed Google Scholar
Strable, E. & Finn, M. G. Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol.327, 1–21 (2009). CASPubMed Google Scholar
Sengupta, S. et al. Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug. Chem.16, 1572–1579 (2005). ArticleCAS Google Scholar
Almeida, J. D., Edwards, D. C., Brand, C. M. & Heath, T. D. Formation of virosomes from influenza subunits and liposomes. Lancet2, 899–901 (1975). ArticleCASPubMed Google Scholar
de Jonge, J. et al. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem. J.405, 41–49 (2007). ArticleCASPubMedPubMed Central Google Scholar
Daemen, T. et al. Virosomes for antigen and DNA delivery. Adv. Drug Deliv. Rev.57, 451–463 (2005). ArticleCASPubMed Google Scholar
Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol.285, 25–66 (2005). CASPubMedPubMed Central Google Scholar
Leroux-Roels, G. Unmet needs in modern vaccinology adjuvants to improve the immune response. Vaccine28 (Suppl. 3), 25–36 (2010). Article Google Scholar
Chams, V., Bonnafous, P. & Stegmann, T. Influenza hemagglutinin mediated fusion of membranes containing poly(ethylene-glycol) grafted lipids: new insights into the fusion mechanism. FEBS Lett.448, 28–32 (1999). ArticleCASPubMed Google Scholar
Waelti, E. et al. Targeting HER-2/neu with antirat Neu virosomes for cancer therapy. Cancer Res.62, 437–444 (2002). CASPubMed Google Scholar
de Jonge, J., Holtrop, M., Wilschut, J. & Huckriede, A. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. Gene Ther.13, 400–411 (2006). ArticleCASPubMed Google Scholar
Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature462, 449–460 (2009). ArticleCASPubMed Google Scholar
Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K. L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA90, 4942–4946 (1993). ArticleCASPubMedPubMed Central Google Scholar
Reis e Sousa, C. & Germain, R. N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med.182, 841–851 (1995). ArticleCASPubMed Google Scholar
Serre, K., Giraudo, L., Siret, C., Leserman, L. & Machy, P. CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur. J. Immunol.36, 1386–1397 (2006). ArticleCASPubMed Google Scholar
Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J. & Unanue, E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell64, 393–401 (1991). ArticleCASPubMed Google Scholar
Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology117, 78–88 (2006). ArticleCASPubMedPubMed Central Google Scholar
Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature450, 110–114 (2007). ArticleCASPubMed Google Scholar
Manolova, V. et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38, 1404–1413 (2008). ArticleCASPubMed Google Scholar
Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotech.25, 1159–1164 (2007). ArticleCAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). ArticleCASPubMed Google Scholar
van Duin, D., Medzhitov, R. & Shaw, A. C. Triggering TLR signaling in vaccination. Trends Immunol.27, 49–55 (2006). ArticleCASPubMed Google Scholar
Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440, 808–812 (2006). ArticleCASPubMed Google Scholar
Heit, A., Schmitz, F., Haas, T., Busch, D. H. & Wagner, H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol.37, 2063–2074 (2007). ArticleCASPubMed Google Scholar
Demento, S. L. et al. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol.185, 2989–2997 (2010). ArticleCASPubMed Google Scholar
Alving, C. R. & Rao, M. Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine26, 3036–3045 (2008). ArticleCASPubMed Google Scholar
Brodsky, I. E. & Monack, D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin. Immunol.21, 199–207 (2009). ArticleCASPubMed Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol.9, 847–856 (2008). ArticleCAS Google Scholar
Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA106, 870–875 (2009). ArticleCASPubMedPubMed Central Google Scholar
Malyala, P., O'Hagan, D. T. & Singh, M. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv. Drug Deliv. Rev.61, 218–225 (2009). ArticleCASPubMed Google Scholar
Xu, L. et al. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum. Gene Ther.13, 469–481 (2002). This study described a virus-mimetic synthetic system that resembles the structural and functional traits of a virus. ArticleCASPubMed Google Scholar
Lee, E. S., Kim, D., Youn, Y. S., Oh, K. T. & Bae, Y. H. A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. Engl.47, 2418–2421 (2008). ArticleCASPubMedPubMed Central Google Scholar
Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol.2, 249–255 (2007). ArticleCAS Google Scholar
Muzykantov, V. R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv.7, 403–427 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hamidi, M., Zarrin, A., Foroozesh, M. & Mohammadi-Samani, S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J. Control Release118, 145–160 (2007). ArticleCASPubMed Google Scholar
Gopal, V., Kumar, A., Usha, A., Karthik, A. & Udupa, N. Effective drug targeting by erythrocytes as carrier systems. Curr. Trends Biotechnol. Pharm.1, 18–33 (2007). CAS Google Scholar
Fraternale, A. et al. Macrophage protection by addition of glutathione (GSH)-loaded erythrocytes to AZT and DDI in a murine AIDS model. Antiviral Res.56, 263–272 (2002). ArticleCASPubMed Google Scholar
Talwar, N. & Jain, N. Erythrocytes as carriers of metronidazole: in vitro characterization. Drug Dev. Ind. Pharm.18, 1799–1812 (1992). ArticleCAS Google Scholar
Kravtzoff, R., Ropars, C., Laguerre, M., Muh, J. & Chassaigne, M. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies. J. Pharm. Pharmacol.42, 473 (1990). ArticleCASPubMed Google Scholar
Annese, V. et al. Erythrocytes-mediated delivery of dexamethasone in steroid-dependent IBD patients — a pilot uncontrolled study. Am. J. Gastroenterol.100, 1370–1375 (2005). ArticleCASPubMed Google Scholar
Hamidi, M., Tajerzadeh, H., Dehpour, A. R., Rouini, M. R. & Ejtemaee-Mehr, S. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv.8, 223–230 (2001). ArticleCASPubMed Google Scholar
Lotero, L. A., Olmos, G. & Diez, J. C. Delivery to macrophages and toxic action of etoposide carried in mouse red blood cells. Biochim. Biophys. Acta1620, 160–166 (2003). ArticleCASPubMed Google Scholar
Kim, S. H. et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials30, 959–967 (2009). ArticlePubMedCAS Google Scholar
Flynn, G., McHale, L. & McHale, A. P. Methotrexate-loaded, photosensitized erythrocytes: a photo-activatable carrier/delivery system for use in cancer therapy. Cancer Lett.82, 225–229 (1994). ArticleCASPubMed Google Scholar
Jain, S., Jain, S. K. & Dixit, V. Magnetically guided rat erythrocytes bearing isoniazid: preparation, characterization, and evaluation. Drug Dev. Ind. Pharm.23, 999–1006 (1997). ArticleCAS Google Scholar
Chiarantini, L., Rossi, L., Fraternale, A. & Magnani, M. Modulated red blood cell survival by membrane protein clustering. Mol. Cell Biochem.144, 53–59 (1995). ArticleCASPubMed Google Scholar
Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control Release100, 111–119 (2004). ArticleCASPubMed Google Scholar
Chambers, E. & Mitragotri, S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp. Biol. Med. (Maywood)232, 958–966 (2007). CAS Google Scholar
Murciano, J. C. et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nature Biotech.21, 891–896 (2003). ArticleCAS Google Scholar
Danielyan, K. et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation118, 1442–1449 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zaitsev, S. et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood108, 1895–1902 (2006). ArticleCASPubMedPubMed Central Google Scholar
Burke, B., Sumner, S., Maitland, N. & Lewis, C. E. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J. Leukoc. Biol.72, 417–428 (2002). CASPubMed Google Scholar
Liu, Y. et al. Ingress of blood-borne macrophages across the blood–brain barrier in murine HIV1 encephalitis. J. Neuroimmunol.200, 41–52 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dou, H. et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol.183, 661–669 (2009). ArticleCASPubMed Google Scholar
Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol.196, 254–265 (2002). ArticleCASPubMed Google Scholar
Choi, M. R. et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett.7, 3759–3765 (2007). This was the first study of photothermal therapy that used TAMs as delivery carriers of gold nanoshells. ArticleCASPubMed Google Scholar
Alizadeh, D., Zhang, L., Hwang, J., Schluep, T. & Badie, B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine6, 382–390 (2009). ArticlePubMedCAS Google Scholar
Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood104, 2224–2234 (2004). ArticleCASPubMed Google Scholar
Swiston, A. J. et al. Surface functionalization of living cells with multilayer patches. Nano Lett.8, 4446–4453 (2008). ArticleCASPubMed Google Scholar
Swiston, A. J., Gilbert, J. B., Irvine, D. J., Cohen, R. E. & Rubner, M. F. Freely suspended cellular “backpacks” lead to cell aggregate self-assembly. Biomacromolecules11, 1826–1832 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Med.16, 1035–1041 (2010). ArticleCASPubMed Google Scholar
Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer8, 299–308 (2008). ArticleCAS Google Scholar
Studeny, M. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst.96, 1593–1603 (2004). ArticleCASPubMed Google Scholar
Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res.62, 3603–3608 (2002). CASPubMed Google Scholar
Nakamizo, A. et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res.65, 3307–3318 (2005). ArticleCASPubMed Google Scholar
Ren, C. et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther.15, 1446–1453 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ren, C. et al. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells26, 2332–2338 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stagg, J., Lejeune, L., Paquin, A. & Galipeau, J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther.15, 597–608 (2004). ArticleCASPubMed Google Scholar
Nakamura, K. et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther.11, 1155–1164 (2004). ArticleCASPubMed Google Scholar
Chen, X. et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther.16, 749–756 (2008). ArticleCASPubMed Google Scholar
Danks, M. K. et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res.67, 22–25 (2007). ArticleCASPubMed Google Scholar
Roger, M. et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials31, 8393–8401 (2010). ArticleCASPubMed Google Scholar
Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J. & Mitragotri, S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA106, 21495–21499 (2009). This study described RBC-mimetic synthetic polymer particles that resemble natural RBCs in size, shape, mechanical flexibility as well as oxygen-carrying ability. ArticleCASPubMedPubMed Central Google Scholar
Haghgooie, R., Toner, M. & Doyle, P. Squishy non-spherical hydrogel microparticles. Macromol. Rapid Commun.31, 128–134 (2010). CASPubMed Google Scholar
Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA108, 586–591 (2011). This paper demonstrated that particles that possess deformability that is comparable to RBCs exhibit longer circulation times. ArticleCASPubMedPubMed Central Google Scholar
Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science288, 2051–2054 (2000). ArticleCASPubMed Google Scholar
Yoo, J., Chambers, E. & Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des.16, 2298–2307 (2010). ArticleCASPubMed Google Scholar
Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol.180, 989–1003 (2008). This was the first study to use CD47, a 'marker of self', on synthetic particles to obtain resistance to phagocytosis by macrophages. ArticleCASPubMedPubMed Central Google Scholar
Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater.8, 15–23 (2009). ArticleCAS Google Scholar
Kisak, E. T., Coldren, B. & Zasadzinski, J. A. Nanocompartments enclosing vesicles, colloids, and macromolecules via interdigitated lipid bilayers. Langmuir18, 284–288 (2002). ArticleCAS Google Scholar
Boyer, C. & Zasadzinski, J. A. Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano1, 176–182 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature436, 568–572 (2005). ArticleCASPubMed Google Scholar
Kubowicz, S., Baussard, J. & Lutz, J. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew. Chem. Int. Ed. Engl.44, 5262–5265 (2005). ArticleCASPubMed Google Scholar
Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science306, 98–101 (2004). ArticleCASPubMed Google Scholar
Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science308, 537–541 (2005). ArticleCASPubMed Google Scholar
Nie, Z., Xu, S., Seo, M., Lewis, P. C. & Kumacheva, E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc.127, 8058–8063 (2005). ArticleCASPubMed Google Scholar
Berkland, C., Pollauf, E., Pack, D. W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control Release96, 101–111 (2004). ArticleCASPubMed Google Scholar
Roh, K.H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater.4, 759–763 (2005). This was the demonstration of a novel technique for synthesizing nanoparticles with biphasic geometry. ArticleCAS Google Scholar
Bhaskar, S., Hitt, J., Chang, S.W. L. & Lahann, J. Multicompartmental microcylinders. Angew. Chem. Int. Ed. Engl.48, 4589–4593 (2009). ArticleCASPubMed Google Scholar
Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. Stop-flow lithography in a microfluidic device. Lab Chip7, 818–828 (2007). ArticleCASPubMed Google Scholar
Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater.5, 365–369 (2006). ArticleCAS Google Scholar
Gentschev, I. et al. Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine19, 2621–2628 (2001). ArticleCASPubMed Google Scholar
Ebensen, T. et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol.172, 6858–6865 (2004). ArticleCASPubMed Google Scholar
Schmidt, U., Gunther, C., Rudolph, R. & Bohm, G. Protein and peptide delivery via engineered polyomavirus-like particles. FASEB J.15, 1646–1648 (2001). ArticleCASPubMed Google Scholar