Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). CASPubMedPubMed Central Google Scholar
Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer6, 259–269 (2006). CAS Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). CASPubMed Google Scholar
Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103, 2257–2261 (2006). CASPubMedPubMed Central Google Scholar
Esteller, M. Non-coding RNAs in human disease. Nature Rev. Genet.12, 861–874 (2011). CASPubMed Google Scholar
Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer6, 857–866 (2006). CAS Google Scholar
Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113, 673–676 (2003). CASPubMed Google Scholar
Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Rev. Genet.10, 704–714 (2009). CASPubMed Google Scholar
Spizzo, R., Almeida, M. I., Colombatti, A. & Calin, G. A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene31, 4577–4587 (2012). CASPubMedPubMed Central Google Scholar
Pennisi, E. Genomics. ENCODE project writes eulogy for junk DNA. Science337, 1159–1161 (2012). CASPubMed Google Scholar
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). CAS Google Scholar
Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.79, 351–379 (2010). CASPubMed Google Scholar
Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov.9, 775–789 (2010). CAS Google Scholar
Thorsen, S. B., Obad, S., Jensen, N. F., Stenvang, J. & Kauppinen, S. The therapeutic potential of microRNAs in cancer. Cancer J.18, 275–284 (2012). CASPubMed Google Scholar
van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nature Rev. Cancer11, 644–656 (2011). CAS Google Scholar
van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nature Rev. Drug Discov.11, 860–872 (2012). CAS Google Scholar
Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nature Rev. Drug Discov.12, 433–446 (2013). CAS Google Scholar
Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455, 1124–1128 (2008). CASPubMed Google Scholar
Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA104, 9667–9672 (2007). CASPubMedPubMed Central Google Scholar
Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science318, 1931–1934 (2007). CASPubMed Google Scholar
Eiring, A. M. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell140, 652–665 (2010). CASPubMedPubMed Central Google Scholar
Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30, 460–471 (2008). PubMed Google Scholar
Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA109, E2110–E2116 (2012). CASPubMedPubMed Central Google Scholar
Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008). CASPubMedPubMed Central Google Scholar
Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA108, 5003–5008 (2011). CASPubMedPubMed Central Google Scholar
Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol.9, 654–659 (2007). CASPubMed Google Scholar
Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biol.13, 423–433 (2011). CASPubMed Google Scholar
Pigati, L. et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE5, e13515 (2010). PubMedPubMed Central Google Scholar
Cortez, M. A. et al. MicroRNAs in body fluids — the mix of hormones and biomarkers. Nature Rev. Clin. Oncol.8, 467–477 (2011). CAS Google Scholar
Kasinski, A. L. & Slack, F. J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nature Rev. Cancer11, 849–864 (2011). CAS Google Scholar
Spizzo, R., Nicoloso, M. S., Croce, C. M. & Calin, G. A. SnapShot: microRNAs in cancer. Cell137, 586–586e1 (2009). CASPubMed Google Scholar
Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature467, 86–90 (2010). CASPubMed Google Scholar
Hatley, M. E. et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell18, 282–293 (2010). CASPubMedPubMed Central Google Scholar
Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem.283, 1026–1033 (2008). CASPubMed Google Scholar
Mu, P. et al. Genetic dissection of the miR-17∼92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev.23, 2806–2811 (2009). CASPubMedPubMed Central Google Scholar
Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA103, 7024–7029 (2006). CASPubMedPubMed Central Google Scholar
Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G. A. MicroRNAs — the micro steering wheel of tumour metastases. Nature Rev. Cancer9, 293–302 (2009). CAS Google Scholar
Pencheva, N. & Tavazoie, S. F. Control of metastatic progression by microRNA regulatory networks. Nature Cell Biol.15, 546–554 (2013). CASPubMed Google Scholar
Png, K. J., Halberg, N., Yoshida, M. & Tavazoie, S. F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature481, 190–194 (2012). CAS Google Scholar
Song, S. J. et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell154, 311–324 (2013). CASPubMedPubMed Central Google Scholar
Pineau, P. et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 264–269 (2010). CASPubMed Google Scholar
Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA102, 18081–18086 (2005). CASPubMedPubMed Central Google Scholar
Fabbri, M. et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA305, 59–67 (2011). CASPubMedPubMed Central Google Scholar
Mavrakis, K. J. et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genet.43, 673–678 (2011). CASPubMed Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). CASPubMed Google Scholar
Uhlmann, S. et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Syst. Biol.8, 570 (2012). PubMedPubMed Central Google Scholar
Wheeler, D. L., Dunn, E. F. & Harari, P. M. Understanding resistance to EGFR inhibitors — impact on future treatment strategies. Nature Rev. Clin. Oncol.7, 493–507 (2010). CAS Google Scholar
Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA105, 5166–5171 (2008). CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005). CASPubMed Google Scholar
Almeida, M. I. et al. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology142, 886–896e9 (2012). CASPubMed Google Scholar
Girardot, M. et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood116, 437–445 (2010). CASPubMed Google Scholar
Jiang, L. et al. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer10, 318 (2010). PubMedPubMed Central Google Scholar
Galm, O., Herman, J. G. & Baylin, S. B. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev.20, 1–13 (2006). CASPubMed Google Scholar
Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67, 1424–1429 (2007). CASPubMed Google Scholar
Bandres, E. et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer125, 2737–2743 (2009). CASPubMed Google Scholar
Saito, Y. & Jones, P. A. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle5, 2220–2222 (2006). CASPubMed Google Scholar
Melo, S. et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl Acad. Sci. USA108, 4394–4399 (2011). CASPubMedPubMed Central Google Scholar
Bader, A. G., Brown, D., Stoudemire, J. & Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther.18, 1121–1126 (2011). CASPubMedPubMed Central Google Scholar
Tivnan, A. et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS ONE7, e38129 (2012). CASPubMedPubMed Central Google Scholar
Trang, P. et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther.19, 1116–1122 (2011). CASPubMedPubMed Central Google Scholar
Tazawa, H., Tsuchiya, N., Izumiya, M. & Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA104, 15472–15477 (2007). CASPubMedPubMed Central Google Scholar
Ji, J. et al. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med.361, 1437–1447 (2009). CASPubMedPubMed Central Google Scholar
Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137, 1005–1017 (2009). CASPubMedPubMed Central Google Scholar
Chen, L. et al. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol. Ther.19, 1521–1528 (2011). CASPubMedPubMed Central Google Scholar
Lennox, K. A. & Behlke, M. A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther.18, 1111–1120 (2011). CASPubMed Google Scholar
Swarbrick, A. et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nature Med.16, 1134–1140 (2010). CASPubMed Google Scholar
Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368, 1685–1694 (2013). CASPubMed Google Scholar
Lieberman, J. & Sarnow, P. Micromanaging hepatitis C virus. N. Engl. J. Med.368, 1741–1743 (2013). CASPubMed Google Scholar
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). CASPubMed Google Scholar
Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genet.43, 371–378 (2011). CASPubMed Google Scholar
Zhang, Y. et al. LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood120, 1678–1686 (2012). CASPubMed Google Scholar
Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature452, 896–899 (2008). CASPubMed Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). PubMed Google Scholar
Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotech.28, 341–347 (2010). CAS Google Scholar
Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods4, 721–726 (2007). CASPubMed Google Scholar
Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell137, 1032–1046 (2009). CASPubMedPubMed Central Google Scholar
Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol.12, 247–256 (2010). CASPubMed Google Scholar
Xie, J. et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nature Methods9, 403–409 (2012). CASPubMedPubMed Central Google Scholar
Davis, S. et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res.37, 70–77 (2009). CASPubMed Google Scholar
Dvinge, H. et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature497, 378–382 (2013). CASPubMed Google Scholar
Gumireddy, K. et al. Small-molecule inhibitors of microrna miR-21 function. Angew. Chem. Int. Ed Engl.47, 7482–7484 (2008). CASPubMedPubMed Central Google Scholar
Young, D. D., Connelly, C. M., Grohmann, C. & Deiters, A. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J. Am. Chem. Soc.132, 7976–7981 (2010). CASPubMed Google Scholar
Zhang, S., Chen, L., Jung, E. J. & Calin, G. A. Targeting microRNAs with small molecules: from dream to reality. Clin. Pharmacol. Ther.87, 754–758 (2010). CASPubMed Google Scholar
Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neurosci.15, 827–835 (2012). CASPubMed Google Scholar
O'Brien, S. et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol.25, 1114–1120 (2007). CASPubMed Google Scholar
Jiang, K. Biotech comes to its 'antisenses' after hard-won drug approval. Nature Med.19, 252 (2013). PubMed Google Scholar
Ding, L. et al. Combined transfection of Bcl-2 siRNA and miR-15a oligonucleotides enhanced methotrexate-induced apoptosis in Raji cells. Cancer Biol. Med.10, 16–21 (2013). PubMedPubMed Central Google Scholar
Hu, X. et al. The effect of Bcl-2 siRNA combined with miR-15a oligonucleotides on the growth of Raji cells. Med. Oncol.30, 430 (2013). PubMed Google Scholar
Pieters, R. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet370, 240–250 (2007). CASPubMed Google Scholar
Kotani, A. et al. miR-128b is a potent glucocorticoid sensitizer in MLL–AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood114, 4169–4178 (2009). CASPubMedPubMed Central Google Scholar
Kotani, A. et al. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle9, 1037–1042 (2010). CASPubMed Google Scholar
Bockhorn, J. et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nature Commun.4, 1393 (2013). Google Scholar
Kim, S. J. et al. Development of microRNA-145 for therapeutic application in breast cancer. J. Control Release155, 427–434 (2011). CASPubMed Google Scholar
Corsten, M. F. et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res.67, 8994–9000 (2007). CASPubMed Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495, 333–338 (2013). CASPubMed Google Scholar
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science309, 1564–1566 (2005). PubMed Google Scholar
Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell Biol.10, 637–643 (2009). CAS Google Scholar
Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell12, 215–229 (2007). CASPubMed Google Scholar
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464, 1071–1076 (2010). CASPubMedPubMed Central Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). CASPubMedPubMed Central Google Scholar
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106, 11667–11672 (2009). CASPubMedPubMed Central Google Scholar
Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene22, 8031–8041 (2003). PubMed Google Scholar
Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142, 409–419 (2010). CASPubMedPubMed Central Google Scholar
Faghihi, M. A. & Wahlestedt, C. RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol.7, R38 (2006). PubMedPubMed Central Google Scholar
Ling, H. et al. CCAT2, a novel non-coding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res.23, 1446–1461 (2013). CASPubMedPubMed Central Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell146, 353–358 (2011). CASPubMedPubMed Central Google Scholar
Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, 1033–1038 (2010). CASPubMedPubMed Central Google Scholar
Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet.43, 621–629 (2011). CASPubMed Google Scholar
Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature488, 111–115 (2012). CASPubMedPubMed Central Google Scholar
Li, C. H. & Chen, Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int. J. Biochem. Cell Biol.45, 1895–1910 (2013). CASPubMed Google Scholar
Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res.73, 1180–1189 (2013). CASPubMed Google Scholar
Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal.3, ra8 (2010). PubMedPubMed Central Google Scholar
Rusk, N. AntagoNATs boost gene expression. Nature Methods9, 437 (2012). CASPubMed Google Scholar
Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotech.30, 453–459 (2012). CAS Google Scholar
Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet.8, 173–184 (2007). CASPubMed Google Scholar
Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nature Rev. Cancer11, 59–67 (2011). CAS Google Scholar
Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov.8, 129–138 (2009). CAS Google Scholar
Pai, S. I. et al. Prospects of RNA interference therapy for cancer. Gene Ther.13, 464–477 (2006). CASPubMed Google Scholar
Flemming, A. Regulatory watch: pioneering gene therapy on brink of approval. Nature Rev. Drug Discov.11, 664 (2012). CAS Google Scholar
Gruber, K. Europe gives gene therapy the green light. Lancet380, e10 (2012). PubMed Google Scholar
de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nature Genet.43, 1026–1030 (2011). CASPubMed Google Scholar
Okamura, K. & Lai, E. C. Endogenous small interfering RNAs in animals. Nature Rev. Mol. Cell Biol.9, 673–678 (2008). CAS Google Scholar
Kim, V. N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev.20, 1993–1997 (2006). CASPubMed Google Scholar
Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell109, 145–148 (2002). CASPubMed Google Scholar
Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet.41, 572–578 (2009). CASPubMed Google Scholar
Langenberger, D. et al. Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics25, 2298–2301 (2009). CASPubMed Google Scholar
Wang, X. J., Gaasterland, T. & Chua, N. H. Genome-wide prediction and identification of _cis_-natural antisense transcripts in Arabidopsis thaliana. Genome Biol.6, R30 (2005). PubMedPubMed Central Google Scholar
Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature495, 384–388 (2013). CASPubMed Google Scholar
Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458, 223–227 (2009). CASPubMedPubMed Central Google Scholar
Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494, 497–501 (2013). CASPubMedPubMed Central Google Scholar
Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science315, 97–100 (2007). CASPubMed Google Scholar
Forman, J. J., Legesse-Miller, A. & Coller, H. A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl Acad. Sci. USA105, 14879–14884 (2008). CASPubMedPubMed Central Google Scholar
Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA105, 1608–1613 (2008). CASPubMedPubMed Central Google Scholar
Redis, R. S., Calin, S., Yang, Y., You, M. J. & Calin, G. A. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol. Ther.136, 169–174 (2012). CASPubMed Google Scholar
Yang, M. et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer10, 117 (2011). CASPubMedPubMed Central Google Scholar
Liu, Y. et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am. J. Pathol.176, 2490–2499 (2010). CASPubMedPubMed Central Google Scholar
Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104, 15805–15810 (2007). CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). CASPubMedPubMed Central Google Scholar
Klein, U. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell17, 28–40 (2010). CASPubMed Google Scholar
Wojcik, S. E. et al. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis31, 208–215 (2010). CASPubMed Google Scholar
Fabbri, M., Valeri, N. & Calin, G. A. MicroRNAs and genomic variations: from Proteus tricks to Prometheus gift. Carcinogenesis30, 912–917 (2009). CASPubMed Google Scholar
Fabbri, M. MicroRNAs and cancer epigenetics. Curr. Opin. Investig. Drugs9, 583–590 (2008). CASPubMed Google Scholar
Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res.18, 997–1006 (2008). CASPubMed Google Scholar
Zhang, H. L. et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate71, 326–331 (2011). CASPubMed Google Scholar
Cheng, H. et al. Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE6, e17745 (2011). CASPubMedPubMed Central Google Scholar
Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature449, 682–688 (2007). CASPubMed Google Scholar
Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102, 13944–13949 (2005). CASPubMedPubMed Central Google Scholar
Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet.38, 1060–1065 (2006). CASPubMed Google Scholar
Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005). CASPubMed Google Scholar
Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology133, 647–658 (2007). CASPubMed Google Scholar
Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell26, 745–752 (2007). CASPubMedPubMed Central Google Scholar
Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell26, 731–743 (2007). CASPubMed Google Scholar
Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Med.17, 211–215 (2011). CASPubMed Google Scholar
Yang, S. et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene32, 4294–4303 (2012). PubMed Google Scholar
Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA102, 3627–3632 (2005). CASPubMedPubMed Central Google Scholar
Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451, 147–152 (2008). CASPubMedPubMed Central Google Scholar
Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biol.10, 202–210 (2008). CASPubMed Google Scholar
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005). CASPubMed Google Scholar
Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res.67, 9762–9770 (2007). CASPubMed Google Scholar
Tsang, W. P. & Kwok, T. T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis13, 1215–1222 (2008). CASPubMed Google Scholar
Zalfa, F. et al. Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J. Biol. Chem.280, 33403–33410 (2005). CASPubMed Google Scholar
Muddashetty, R. et al. Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J. Mol. Biol.321, 433–445 (2002). CASPubMed Google Scholar
Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell39, 925–938 (2010). CASPubMedPubMed Central Google Scholar
Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell135, 919–932 (2008). CASPubMedPubMed Central Google Scholar
Crawford, E. D. et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J. Urol.188, 1726–1731 (2012). PubMed Google Scholar
Dias, N. & Stein, C. A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther.1, 347–355 (2002). CASPubMed Google Scholar
Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature430, 161–164 (2004). CASPubMed Google Scholar