Liu, A. M., Xu, Z. & Luk, J. M. An update on targeting Hippo-YAP signaling in liver cancer. Expert Opin. Ther. Targets16, 243–247 (2012). ArticleCASPubMed Google Scholar
Hong, W. & Guan, K. L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin. Cell Dev. Biol.23, 785–793 (2012). ArticleCASPubMedPubMed Central Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007). ArticleCASPubMed Google Scholar
Wang, Y. et al. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci.101, 1279–1285 (2010). ArticleCASPubMed Google Scholar
Zhou, Z. et al. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene30, 2181–2186 (2011). ArticleCASPubMed Google Scholar
Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA103, 12405–12410 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell125, 1253–1267 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chan, S. W. et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res.68, 2592–2598 (2008). ArticleCASPubMed Google Scholar
Fernandez, L. A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev.23, 2729–2741 (2009). ArticleCAS Google Scholar
Xu, M. Z. et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer115, 4576–4585 (2009). ArticleCASPubMed Google Scholar
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev.21, 2747–2761 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev.24, 2383–2388 (2010). This study shows that YAP levels are elevated during the regeneration of damaged mouse intestinal crypts after injury by DSS and that YAP is essential for crypt regeneration, but its loss causes no obvious defects during normal homeostasis. ArticleCASPubMedPubMed Central Google Scholar
Grusche, F. A., Degoutin, J. L., Richardson, H. E. & Harvey, K. F. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol.350, 255–266 (2011). ArticleCASPubMed Google Scholar
Staley, B. K. & Irvine, K. D. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol.20, 1580–1587 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development137, 4147–4158 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development137, 4135–4145 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ren, F. et al. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl Acad. Sci. USA107, 21064–21069 (2010). ArticlePubMedPubMed Central Google Scholar
Heallen, T. et al. Hippo signaling impedes postnatal cardiomyocyte regeneration. Development140, 4683–4690 (2013). References 28 and 29 show that YAP is required for postnatal cardiac growth and neonatal cardiac regeneration, and that the expression of a constitutively active form of YAP or deletion of Hippo pathway components in the adult heart stimulates cardiac regeneration after myocardial infarction. ArticleCASPubMedPubMed Central Google Scholar
Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol.350, 139–151 (2011). ArticleCASPubMed Google Scholar
Schroeder, M. C. & Halder, G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin. Cell Dev. Biol.23, 803–811 (2012). ArticleCASPubMed Google Scholar
Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol.5, 914–920 (2003). ArticleCASPubMed Google Scholar
Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell114, 457–467 (2003). ArticleCASPubMed Google Scholar
Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol.5, 921–927 (2003). ArticleCASPubMed Google Scholar
Wu, S., Huang, J., Dong, J. & Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell114, 445–456 (2003). ArticleCASPubMed Google Scholar
Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev.17, 2514–2519 (2003). ArticleCASPubMedPubMed Central Google Scholar
Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev.9, 534–546 (1995). ArticleCASPubMed Google Scholar
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development121, 1053–1063 (1995). CASPubMed Google Scholar
Creasy, C. L. & Chernoff, J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene167, 303–306 (1995). ArticleCASPubMed Google Scholar
Creasy, C. L. & Chernoff, J. Cloning and characterization of a human protein kinase with homology to Ste20. J. Biol. Chem.270, 21695–21700 (1995). ArticleCASPubMed Google Scholar
Taylor, L. K., Wang, H. C. & Erikson, R. L. Newly identified stress-responsive protein kinases, Krs-1 and Krs-2. Proc. Natl Acad. Sci. USA93, 10099–10104 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tapon, N. et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell110, 467–478 (2002). ArticleCASPubMed Google Scholar
Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development129, 5719–5730 (2002). ArticleCASPubMed Google Scholar
Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell120, 675–685 (2005). ArticleCASPubMed Google Scholar
Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell122, 421–434 (2005). ArticleCASPubMed Google Scholar
Goulev, Y. et al. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr. Biol.18, 435–441 (2008). ArticleCASPubMed Google Scholar
Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell14, 388–398 (2008). ArticleCASPubMed Google Scholar
Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell14, 377–387 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev.15, 1229–1241 (2001). ArticleCASPubMedPubMed Central Google Scholar
Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell139, 757–769 (2009). ArticleCASPubMedPubMed Central Google Scholar
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biol.10, 837–848 (2008). ArticleCASPubMed Google Scholar
Ferrigno, O. et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene21, 4879–4884 (2002). ArticleCASPubMed Google Scholar
Murakami, M., Nakagawa, M., Olson, E. N. & Nakagawa, O. A. WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc. Natl Acad. Sci. USA102, 18034–18039 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rosenbluh, J. et al. β-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell151, 1457–1473 (2012). This paper shows that YAP forms a complex with β-catenin and the transcription factor TBX5 in β-catenin-dependent cancer cell lines. The formation of this complex requires phosphorylation of YAP by YES1; dasatinib inhibits YES1 function and impedes the proliferation of β-catenin-dependent cancers in cell lines and animal models. ArticleCASPubMedPubMed Central Google Scholar
Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A. WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J.18, 2551–2562 (1999). ArticleCASPubMedPubMed Central Google Scholar
Strano, S. et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem.276, 15164–15173 (2001). ArticleCASPubMed Google Scholar
Callus, B. A., Verhagen, A. M. & Vaux, D. L. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J.273, 4264–4276 (2006). ArticleCASPubMed Google Scholar
Praskova, M., Xia, F. & Avruch, J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol.18, 311–321 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chan, E. H. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene24, 2076–2086 (2005). ArticleCASPubMed Google Scholar
Wei, X., Shimizu, T. & Lai, Z. C. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J.26, 1772–1781 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lei, Q. Y. et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol.28, 2426–2436 (2008). ArticleCASPubMedPubMed Central Google Scholar
Oh, H. & Irvine, K. D. In vivo regulation of Yorkie phosphorylation and localization. Development135, 1081–1088 (2008). ArticleCASPubMed Google Scholar
Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem.283, 5496–5509 (2008). ArticleCASPubMed Google Scholar
Oka, T., Mazack, V. & Sudol, M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J. Biol. Chem.283, 27534–27546 (2008). ArticleCASPubMed Google Scholar
Kanai, F. et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J.19, 6778–6791 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ren, F., Zhang, L. & Jiang, J. Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev. Biol.337, 303–312 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, C. Y. et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J. Biol. Chem.285, 37159–37169 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev.24, 72–85 (2010). ArticleCASPubMedPubMed Central Google Scholar
Koontz, L. M. et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell25, 388–401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Guo, T. et al. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res.23, 1201–1214 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ota, M. & Sasaki, H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development135, 4059–4069 (2008). ArticleCASPubMed Google Scholar
Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev.23, 2307–2319 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem.284, 13355–13362 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bazellieres, E., Assemat, E., Arsanto, J. P., Le Bivic, A. & Massey-Harroche, D. Crumbs proteins in epithelial morphogenesis. Front. Biosci.14, 2149–2169 (2009). ArticleCAS Google Scholar
Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell19, 831–844 (2010). ArticleCASPubMed Google Scholar
Chen, C. L. et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA107, 15810–15815 (2010). ArticleCASPubMedPubMed Central Google Scholar
Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. Curr. Biol.20, 582–590 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol.20, 573–581 (2010). ArticleCASPubMed Google Scholar
Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA107, 10532–10537 (2010). ArticlePubMedPubMed Central Google Scholar
Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol.23, 1181–1194 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, W., Huang, J. & Chen, J. Angiomotin-like proteins associate with and negatively regulate YAP1. J. Biol. Chem.286, 4364–4370 (2011). ArticleCASPubMed Google Scholar
Paramasivam, M., Sarkeshik, A., Yates, J. R., Fernandes, M. J. & McCollum, D. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol. Biol. Cell22, 3725–3733 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yi, C. et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell19, 527–540 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yi, C. et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci. Signal.6, ra77 (2013). ArticleCASPubMedPubMed Central Google Scholar
Boggiano, J. C., Vanderzalm, P. J. & Fehon, R. G. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev. Cell21, 888–895 (2011). ArticleCASPubMedPubMed Central Google Scholar
Poon, C. L., Lin, J. I., Zhang, X. & Harvey, K. F. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev. Cell21, 896–906 (2011). ArticleCASPubMed Google Scholar
Huang, H. L. et al. Par-1 regulates tissue growth by influencing Hippo phosphorylation status and Hippo-salvador association. PLoS Biol.11, e1001620 (2013). ArticleCASPubMedPubMed Central Google Scholar
Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell18, 300–308 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell18, 288–299 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E. & Stocker, H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell18, 309–316 (2010). ArticleCASPubMed Google Scholar
Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biol.8, 27–36 (2006). ArticleCASPubMed Google Scholar
Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J.30, 2325–2335 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fernandez, B. G. et al. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development138, 2337–2346 (2011). ArticleCASPubMed Google Scholar
Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development138, 3907–3914 (2011). References 96–100 show that YAP activity is regulated by the amount of F-actin stress fibres, by the mechanical properties of the extracellular matrix and by cell geometry. Disruption of F-actin stress fibres or of actin contractility by small-molecule inhibitors suppresses the nuclear localization and activity of YAP. ArticleCASPubMed Google Scholar
Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev.26, 54–68 (2012). ArticleCASPubMedPubMed Central Google Scholar
Miller, E. et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol.19, 955–962 (2012). ArticleCASPubMed Google Scholar
Mo, J. S., Yu, F. X., Gong, R., Brown, J. H. & Guan, K. L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev.26, 2138–2143 (2012). References 101–103 show that GPCRs regulate the activity of the Hippo pathway, and that compounds and ligands that modulate GPCR activity affect YAP activity. ArticleCASPubMedPubMed Central Google Scholar
Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell154, 1047–1059 (2013). ArticleCASPubMed Google Scholar
Kim, N. G., Koh, E., Chen, X. & Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl Acad. Sci. USA108, 11930–11935 (2011). ArticlePubMedPubMed Central Google Scholar
Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal.4, ra33 (2011). ArticleCASPubMedPubMed Central Google Scholar
Das Thakur, M. et al. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr. Biol.20, 657–662 (2010). ArticleCASPubMed Google Scholar
Rauskolb, C., Pan, G., Reddy, B. V., Oh, H. & Irvine, K. D. Zyxin links fat signaling to the Hippo pathway. PLoS Biol.9, e1000624 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol.28, 655–685 (2012). ArticleCASPubMed Google Scholar
Muthuswamy, S. K. & Xue, B. Cell polarity as a regulator of cancer cell behavior plasticity. Annu. Rev. Cell Dev. Biol.28, 599–625 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brieher, W. M. & Yap, A. S. Cadherin junctions and their cytoskeleton(s). Curr. Opin. Cell Biol.25, 39–46 (2013). ArticleCASPubMed Google Scholar
Twiss, F. & de Rooij, J. Cadherin mechanotransduction in tissue remodeling. Cell. Mol. Life Sci. (2013).
Zhang, X., Milton, C. C., Poon, C. L., Hong, W. & Harvey, K. F. Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador-Warts-Hippo pathway. Cell Death Differ.18, 1346–1355 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chan, S. W. et al. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene30, 600–610 (2011). ArticleCASPubMed Google Scholar
Chen, H. I. et al. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. J. Biol. Chem.272, 17070–17077 (1997). ArticleCASPubMed Google Scholar
Sidor, C. M., Brain, R. & Thompson, B. J. Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway. Curr. Biol.23, 223–228 (2013). ArticleCASPubMed Google Scholar
Remue, E. et al. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett.584, 4175–4180 (2010). ArticleCASPubMed Google Scholar
Oka, T. et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem. J.432, 461–472 (2010). ArticleCASPubMed Google Scholar
Poon, C. L., Zhang, X., Lin, J. I., Manning, S. A. & Harvey, K. F. Homeodomain-interacting protein kinase regulates Hippo pathway-dependent tissue growth. Curr. Biol.22, 1587–1594 (2012). ArticleCASPubMed Google Scholar
Chen, J. & Verheyen, E. M. Homeodomain-interacting protein kinase regulates Yorkie activity to promote tissue growth. Curr. Biol.22, 1582–1586 (2012). ArticleCASPubMed Google Scholar
Liu, X. et al. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene32, 1266–1273 (2013). ArticleCASPubMed Google Scholar
Huang, J. M. et al. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene32, 2220–2229 (2013). ArticleCASPubMed Google Scholar
Poernbacher, I., Baumgartner, R., Marada, S. K., Edwards, K. & Stocker, H. Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr. Biol.22, 389–396 (2012). ArticleCASPubMed Google Scholar
Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homolog antagonizes the Hippo pathway. Curr. Biol.16, 2459–2465 (2006). ArticleCASPubMedPubMed Central Google Scholar
Praskova, M., Khoklatchev, A., Ortiz-Vega, S. & Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J.381, 453–462 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, M. et al. Hippo pathway-dependent and -independent roles of RASSF6. Sci. Signal.2, ra59 (2009). ArticlePubMed Google Scholar
Ribeiro, P. S. et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell39, 521–534 (2010). ArticleCASPubMed Google Scholar
Wehr, M. C. et al. Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nature Cell Biol.15, 61–71 (2013). ArticleCASPubMed Google Scholar
Yin, F. et al. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell154, 1342–1355 (2013). ArticleCASPubMed Google Scholar
Chen, C. L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl Acad. Sci. USA109, 484–489 (2012). ArticlePubMed Google Scholar
Menendez, J., Perez-Garijo, A., Calleja, M. & Morata, G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc. Natl Acad. Sci. USA107, 14651–14656 (2010). ArticlePubMedPubMed Central Google Scholar
Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell147, 759–772 (2011). ArticleCASPubMed Google Scholar
Zhao, M., Szafranski, P., Hall, C. A. & Goode, S. Basolateral junctions utilize warts signaling to control epithelial-mesenchymal transition and proliferation crucial for migration and invasion of Drosophila ovarian epithelial cells. Genetics178, 1947–1971 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bossuyt, W. et al. An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogenehttp://dx.doi.org/10.1038/onc.2013.82 (2013).
Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell16, 425–438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA107, 1437–1442 (2010). ArticlePubMedPubMed Central Google Scholar
Song, H. et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl Acad. Sci. USA107, 1431–1436 (2010). ArticlePubMedPubMed Central Google Scholar
Lee, K. P. et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 8248–8253 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA108, E1312–1320 (2011). Using mouse models, this paper reports that inactivation of a single YAP allele reverses hyperproliferation and expansion of the stem cell compartment as well as the loss of differentiated cell types inMst1/Mst2-null intestinal epithelia. ArticlePubMedPubMed Central Google Scholar
George, N. M., Day, C. E., Boerner, B. P., Johnson, R. L. & Sarvetnick, N. E. Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell. Biol.32, 5116–5128 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gao, T. et al. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology144, 1543–1553 (2013). ArticleCASPubMed Google Scholar
Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science332, 458–461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yabuta, N. et al. N-terminal truncation of Lats1 causes abnormal cell growth control and chromosomal instability. J. Cell Sci.126, 508–520 (2013). ArticleCASPubMed Google Scholar
Polesello, C. & Tapon, N. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr. Biol.17, 1864–1870 (2007). ArticleCASPubMed Google Scholar
Meignin, C., Alvarez-Garcia, I., Davis, I. & Palacios, I. M. The Salvador-Warts-Hippo pathway is required for epithelial proliferation and axis specification in Drosophila. Curr. Biol.17, 1871–1878 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol.16, 2101–2110 (2006). ArticleCASPubMed Google Scholar
Bryant, P. J. et al. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol.129, 541–554 (1988). ArticleCASPubMed Google Scholar
Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet.38, 1142–1150 (2006). ArticleCASPubMed Google Scholar
Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the Hippo signaling pathway. Curr. Biol.16, 2081–2089 (2006). ArticleCASPubMed Google Scholar
Willecke, M. et al. The fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol.16, 2090–2100 (2006). ArticleCASPubMed Google Scholar
MacDougall, N. et al. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development128, 665–673 (2001). CASPubMed Google Scholar
Milton, C. C., Zhang, X., Albanese, N. O. & Harvey, K. F. Differential requirement of Salvador-Warts-Hippo pathway members for organ size control in Drosophila melanogaster. Development137, 735–743 (2010). ArticleCASPubMed Google Scholar
Pellock, B. J., Buff, E., White, K. & Hariharan, I. K. The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev. Biol.304, 102–115 (2007). ArticleCASPubMed Google Scholar
Yu, J., Poulton, J., Huang, Y. C. & Deng, W. M. The Hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS ONE3, e1761 (2008). ArticleCASPubMedPubMed Central Google Scholar
McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor Expanded function together in Drosophila to regulate cell proliferation and differentiation. Development127, 1315–1324 (2000). CASPubMed Google Scholar
von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA109, 2394–2399 (2012). ArticlePubMedPubMed Central Google Scholar
Xin, M. et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal.4, ra70 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl Acad. Sci. USA108, 2270–2275 (2011). ArticlePubMedPubMed Central Google Scholar
Mikeladze-Dvali, T. et al. The growth regulators Warts/Lats and Melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell122, 775–787 (2005). ArticleCASPubMed Google Scholar
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell16, 398–410 (2009). ArticleCASPubMed Google Scholar
Nagaraj, R. et al. Control of mitochondrial structure and function by the Yorkie/YAP oncogenic pathway. Genes Dev.26, 2027–2037 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, K. J. & Depamphilis, M. L. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development140, 3680–3690 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bhat, K. P. et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev.25, 2594–2609 (2011). ArticleCASPubMedPubMed Central Google Scholar
Imanaka, Y. et al. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet.56, 270–276 (2011). ArticleCASPubMed Google Scholar
Kawahara, M. et al. Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood112, 3856–3866 (2008). ArticleCASPubMed Google Scholar
Lai, D., Ho, K. C., Hao, Y. & Yang, X. Taxol resistance in breast cancer cells is mediated by the Hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res.71, 2728–2738 (2011). ArticleCASPubMed Google Scholar
Huo, X. et al. Overexpression of Yes-associated protein confers doxorubicin resistance in hepatocellullar carcinoma. Oncol. Rep.29, 840–846 (2013). ArticleCASPubMed Google Scholar
Urtasun, R. et al. Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/Yes-associated protein-mediated activation. Hepatology54, 2149–2158 (2011). ArticleCASPubMed Google Scholar
Juric, V., Chen, C. C. & Lau, L. F. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell. Biol.29, 3266–3279 (2009). ArticleCASPubMedPubMed Central Google Scholar
Piccolo, S., Cordenonsi, M. & Dupont, S. Molecular pathways: YAP & TAZ take the centerstage in organ growth and tumorigenesis. Clin. Cancer Res.19, 4925–4930 (2013). ArticleCASPubMed Google Scholar
Scheel, C. & Weinberg, R. A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol.22, 396–403 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell19, 27–38 (2010). This study shows that heterozygous deletion of YAP significantly suppresses the overproliferation phenotypes resulting from loss ofNF2, which suggests that YAP is a potential drug target in cancers associated with NF2 inactivation. ArticleCASPubMedPubMed Central Google Scholar
Baldwin, C., Garnis, C., Zhang, L., Rosin, M. P. & Lam, W. L. Multiple microalterations detected at high frequency in oral cancer. Cancer Res.65, 7561–7567 (2005). ArticleCASPubMed Google Scholar
Snijders, A. M. et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene24, 4232–4242 (2005). ArticleCASPubMed Google Scholar
Modena, P. et al. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J. Clin. Oncol.24, 5223–5233 (2006). ArticleCASPubMed Google Scholar
Jiang, Z. et al. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res.56, 450–458 (2006). ArticleCASPubMed Google Scholar
Takahashi, Y. et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res.11, 1380–1385 (2005). ArticleCASPubMed Google Scholar
Seidel, C. et al. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog.46, 865–871 (2007). ArticleCASPubMed Google Scholar
Li, H. et al. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int.32, 38–47 (2012). ArticleCASPubMed Google Scholar
Zhang, T. et al. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology56, 2051–2059 (2012). ArticleCASPubMed Google Scholar
Wu, H. et al. The Ets transcription factor GABP is a component of the Hippo pathway essential for growth and antioxidant defense. Cell Rep.3, 1663–1677 (2013). ArticleCASPubMed Google Scholar
Wang, J. et al. TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. Mol. Cell51, 211–225 (2013). ArticleCASPubMedPubMed Central Google Scholar
Konsavage, W. M. et al. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem.287, 11730–11739 (2012). ArticleCASPubMedPubMed Central Google Scholar
Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev.26, 1300–1305 (2012). This paper shows that the expression of a dominant negative version of TEAD2 suppresses the overproliferation and tumorigenesis caused by YAP overexpression or inactivation of NF2, but it does not affect normal liver development. Furthermore, the authors identify the porphyrin family — particularly verteporfin — as inhibitors of the YAP–TEAD interaction and activity. Treatment of mice using verteporfin prevented liver overgrowth owing to YAP overexpression or to the activation of endogenous YAP inNf2-mutant livers. ArticleCASPubMedPubMed Central Google Scholar
Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature493, 106–110 (2013). This paper reports the surprising finding that in transgenic mice the overexpression of YAP in the colon reducesWNTexpression and intestinal stem cell proliferation; conversely, loss of YAP results in WNT hypersensitivity during regeneration, possibly through a mechanism that involves sequestration of the WNT pathway component DVL by YAP in the cytoplasm. ArticleCASPubMed Google Scholar
Li, V. S. & Clevers, H. Intestinal regeneration: YAP-tumor suppressor and oncoprotein? Curr. Biol.23, R110–R112 (2013). ArticleCASPubMed Google Scholar
Diep, C. H. et al. Down-regulation of Yes associated protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS ONE7, e32783 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl Acad. Sci. USA109, E2441–E2450 (2012). ArticlePubMedPubMed Central Google Scholar
Zhou, Z., Zhu, J. S., Xu, Z. P. & Zhang, Q. Lentiviral vector-mediated siRNA knockdown of the YAP gene inhibits growth and induces apoptosis in the SGC7901 gastric cancer cell line. Mol. Med. Rep.4, 1075–1082 (2011). CASPubMed Google Scholar
Wang, X., Su, L. & Ou, Q. Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur. J. Cancer48, 1227–1234 (2012). ArticleCASPubMed Google Scholar
Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Med.18, 1511–1517 (2012). ArticleCASPubMed Google Scholar
Lavado, A. et al. Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development140, 3323–3334 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev.24, 1106–1118 (2010). ArticleCASPubMedPubMed Central Google Scholar
Qin, H. et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum. Mol. Genet.21, 2054–2067 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fellous, T. G. et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology49, 1655–1663 (2009). ArticleCASPubMed Google Scholar
Xu, M. Z. et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene30, 1229–1240 (2011). ArticleCASPubMed Google Scholar
Neesse, A. et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc. Natl Acad. Sci. USA110, 12325–12330 (2013). ArticlePubMedPubMed Central Google Scholar
Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biol.11, 1444–1450 (2009). ArticleCASPubMed Google Scholar
Yang, N. et al. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle11, 2922–2930 (2012). ArticleCASPubMedPubMed Central Google Scholar
Liu, A. M., Xu, M. Z., Chen, J., Poon, R. T. & Luk, J. M. Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin. Ther. Targets14, 855–868 (2010). ArticleCASPubMed Google Scholar
Cohen, P. Protein kinases — the major drug targets of the twenty-first century? Nature Rev. Drug Discov.1, 309–315 (2002). ArticleCAS Google Scholar
Anand, R. et al. Toward the development of a potent and selective organoruthenium mammalian sterile 20 kinase inhibitor. J. Med. Chem.52, 1602–1611 (2009). This paper reports on the development of a small-molecule inhibitor for the MST1 kinase that has high selectivity and that can serve as a starting point for developing improved MST1 inhibitors. ArticleCASPubMedPubMed Central Google Scholar
Ghose, A. K., Herbertz, T., Pippin, D. A., Salvino, J. M. & Mallamo, J. P. Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J. Med. Chem.51, 5149–5171 (2008). ArticleCASPubMed Google Scholar
Norman, R. A., Toader, D. & Ferguson, A. D. Structural approaches to obtain kinase selectivity. Trends Pharmacol. Sci.33, 273–278 (2012). ArticleCASPubMed Google Scholar
Tian, W., Yu, J., Tomchick, D. R., Pan, D. & Luo, X. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc. Natl Acad. Sci. USA107, 7293–7298 (2010). ArticlePubMedPubMed Central Google Scholar
Fan, R., Kim, N. G. & Gumbiner, B. M. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl Acad. Sci. USA110, 2569–2574 (2013). This study shows that mitogenic growth factors such as EGF stimulate YAP nuclear accumulation and activity through PI3K and phosphoinositide-dependent kinase-1 (PDK1) signalling, which causes dissociation of a Hippo core complex. PI3K and PDK1 inhibitors, but not AKT inhibitors, inhibit YAP nuclear accumulation in several cultured cell lines. ArticlePubMedPubMed Central Google Scholar
Strassburger, K., Tiebe, M., Pinna, F., Breuhahn, K. & Teleman, A. A. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev. Biol.367, 187–196 (2012). ArticleCASPubMed Google Scholar
Yu, F. X. et al. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev.27, 1223–1232 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bao, Y. et al. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J. Biochem.150, 199–208 (2011). Using the intracellular localization of a green fluorescent protein (GFP)–YAP fusion protein in osteosarcoma cells as a read-out, the authors conducted a small-scale screen and identified the G protein-coupled β-adrenergic receptor agonist dobutamine as an inhibitor of YAP nuclear localization and activity. ArticleCASPubMed Google Scholar
Oudhoff, M. J. et al. Control of the Hippo pathway by Set7-dependent methylation of Yap. Dev. Cell26, 188–194 (2013). ArticleCASPubMed Google Scholar
Hata, S. et al. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J. Biol. Chem.287, 22089–22098 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mao, B. et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogenehttp://dx.doi.org/10.1038/onc.2013.88 (2013).