Targeting RAS–ERK signalling in cancer: promises and challenges (original) (raw)
Montagut, C. & Settleman, J. Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Lett.283, 125–134 (2009). ArticleCASPubMed Google Scholar
Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene26, 3291–3310 (2007). ArticleCASPubMed Google Scholar
Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene26, 3279–3290 (2007). ArticleCASPubMed Google Scholar
Cantwell-Dorris, E. R., O'Leary, J. J. & Sheils, O. M. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol. Cancer Ther.10, 385–394 (2011). ArticleCASPubMed Google Scholar
Baines, A. T., Xu, D. & Der, C. J. Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem.3, 1787–1808 (2011). ArticleCASPubMed Google Scholar
Neel, N. F. et al. The RalGEF-Ral effector signaling network: the road less traveled for anti-ras drug discovery. Genes Cancer2, 275–287 (2011). ArticleCASPubMedPubMed Central Google Scholar
James, G., Goldstein, J. L. & Brown, M. S. Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc. Natl Acad. Sci. USA93, 4454–4458 (1996). ArticleCASPubMedPubMed Central Google Scholar
Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem.272, 14459–14464 (1997). ArticleCASPubMed Google Scholar
Zimmermann, G. et al. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature497, 638–642 (2013). ArticleCASPubMed Google Scholar
Maurer, T. et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl Acad. Sci. USA109, 5299–5304 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, Q. et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem.51, 6140–6143 (2012). ArticleCAS Google Scholar
Burns, M. C. et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl Acad. Sci. USA111, 3401–3406 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shima, F. et al. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc. Natl Acad. Sci. USA110, 8182–8187 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature503, 548–551 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol.5, 875–885 (2004). ArticleCAS Google Scholar
Weber, C. K., Slupsky, J. R., Kalmes, H. A. & Rapp, U. R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res.61, 3595–3598 (2001). CASPubMed Google Scholar
Cutler, R. E. Jr., Stephens, R. M., Saracino, M. R. & Morrison, D. K. Autoregulation of the Raf-1 serine/threonine kinase. Proc. Natl Acad. Sci. USA95, 9214–9219 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev. Drug Discov.5, 835–844 (2006). ArticleCAS Google Scholar
Emuss, V., Garnett, M., Mason, C. & Marais, R. Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res.65, 9719–9726 (2005). ArticleCASPubMed Google Scholar
Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116, 855–867 (2004). ArticleCASPubMed Google Scholar
Pritchard, C. A., Samuels, M. L., Bosch, E. & McMahon, M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol.15, 6430–6442 (1995). ArticleCASPubMedPubMed Central Google Scholar
Nelson, D. S. et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood123, 3152–3155 (2014). ArticleCASPubMed Google Scholar
Chen, J., Fujii, K., Zhang, L., Roberts, T. & Fu, H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl Acad. Sci. USA98, 7783–7788 (2001). ArticleCASPubMedPubMed Central Google Scholar
O'Neill, E., Rushworth, L., Baccarini, M. & Kolch, W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science306, 2267–2270 (2004). ArticleCASPubMed Google Scholar
Wang, S., Ghosh, R. N. & Chellappan, S. P. Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol. Cell. Biol.18, 7487–7498 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haroche, J. et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood120, 2700–2703 (2012). ArticleCASPubMed Google Scholar
Eisen, T. et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer95, 581–586 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in _BRAF_-mutant melanoma. Nature467, 596–599 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA105, 3041–3046 (2008). ArticleCASPubMedPubMed Central Google Scholar
Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a Phase 1 dose-escalation trial. Lancet379, 1893–1901 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hauschild, A. et al. Dabrafenib in _BRAF_-mutated metastatic melanoma: a multicentre, open-label, Phase 3 randomised controlled trial. Lancet380, 358–365 (2012). ArticleCASPubMed Google Scholar
Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature464, 427–430 (2010). CASPubMedPubMed Central Google Scholar
Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature464, 431–435 (2010). ArticleCASPubMed Google Scholar
Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA107, 14903–14908 (2010). ArticleCASPubMedPubMed Central Google Scholar
Halaban, R. et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell. Melanoma Res.23, 190–200 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karreth, F. A., DeNicola, G. M., Winter, S. P. & Tuveson, D. A. C-Raf inhibits MAPK activation and transformation by B-RafV600E. Mol. Cell36, 477–486 (2009). ArticleCASPubMed Google Scholar
Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New Engl. J. Med.364, 2507–2516 (2011). ArticleCASPubMed Google Scholar
Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl. J. Med.363, 809–819 (2010). ArticleCASPubMed Google Scholar
Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov.4, 80–93 (2014). ArticleCASPubMed Google Scholar
Haroche, J. et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood121, 1495–1500 (2013). ArticleCASPubMed Google Scholar
Holderfield, M. et al. RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation. Cancer Cell23, 594–602 (2013). ArticleCASPubMed Google Scholar
Roring, M. et al. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J.31, 2629–2647 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Wu, X. et al. Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Mol. Cell. Biol.32, 3872–3890 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hu, J. et al. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell154, 1036–1046 (2013). ArticleCASPubMed Google Scholar
Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature461, 542–545 (2009). ArticleCASPubMed Google Scholar
Lavoie, H. et al. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chem. Biol.9, 428–436 (2013). ArticleCAS Google Scholar
Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature480, 387–390 (2011). ArticleCASPubMedPubMed Central Google Scholar
Freeman, A. K., Ritt, D. A. & Morrison, D. K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell49, 751–758 (2013). ArticleCASPubMedPubMed Central Google Scholar
Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. New Engl. J. Med.366, 207–215 (2012). ArticleCASPubMed Google Scholar
Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. New Engl. J. Med.367, 2316–2321 (2012). ArticleCASPubMed Google Scholar
Abdel-Wahab, O. et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF and NRAS mutant malignancies. Cancer Discov.4, 538–545 (2014). ArticlePubMedPubMed Central Google Scholar
Carlino, M. S. et al. New _RAS_-mutant pancreatic adenocarcinoma with combined BRAF and MEK inhibition for metastatic melanoma. J. Clin. Oncol.http://dx.doi.org/10.1200/JCO.2013.51.5783 (2014).
Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas—dependence and resistance. Cancer Cell19, 11–15 (2011). ArticleCASPubMed Google Scholar
Stuart, D. D. et al. Preclinical profile of LGX818: A potent and selective RAF kinase inhibitor. Cancer Res.72, S1 (2012). Google Scholar
Nakamura, A. et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res.73, 7043–7055 (2013). ArticleCASPubMed Google Scholar
Basile, K. J., Le, K., Hartsough, E. J. & Aplin, A. E. Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors. Pigment Cell. Melanoma Res.27, 479–484 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sievert, A. J. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl Acad. Sci. USA110, 5957–5962 (2013). ArticleCASPubMedPubMed Central Google Scholar
Roskoski, R. Jr MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem. Biophys. Res. Commun.417, 5–10 (2012). ArticleCASPubMed Google Scholar
Sebolt-Leopold, J. S. MEK inhibitors: a therapeutic approach to targeting the Ras-MAP kinase pathway in tumors. Curr. Pharm. Design10, 1907–1914 (2004). ArticleCAS Google Scholar
Marks, J. L. et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res.68, 5524–5528 (2008). ArticleCASPubMedPubMed Central Google Scholar
Murugan, A. K., Dong, J., Xie, J. & Xing, M. MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle8, 2122–2124 (2009). ArticleCASPubMed Google Scholar
Haura, E. B. et al. A Phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin. Cancer Res.16, 2450–2457 (2010). ArticleCASPubMed Google Scholar
Rinehart, J. et al. Multicenter Phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol.22, 4456–4462 (2004). ArticleCASPubMed Google Scholar
Banerji, U. et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a Phase I open-label multicenter trial in patients with advanced cancer. Clin. Cancer Res.16, 1613–1623 (2010). ArticleCASPubMed Google Scholar
Lorusso, P. M. et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J. Clin. Oncol.23, 5281–5293 (2005). ArticleCASPubMed Google Scholar
Brown, A. P., Carlson, T. C., Loi, C. M. & Graziano, M. J. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, D0325901, in the rat following oral and intravenous administration. Cancer Chemother. Pharmacol.59, 671–679 (2007). ArticleCASPubMed Google Scholar
Sebolt-Leopold, J. S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med.5, 810–816 (1999). ArticleCASPubMed Google Scholar
Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature439, 358–362 (2006). ArticleCASPubMed Google Scholar
LoRusso, P. M. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res.16, 1924–1937 (2010). ArticleCASPubMed Google Scholar
Yeh, T. C. et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res.13, 1576–1583 (2007). ArticleCASPubMed Google Scholar
Davies, B. R. et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol. Cancer Ther.6, 2209–2219 (2007). ArticleCASPubMed Google Scholar
Adjei, A. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J. Clin. Oncol.26, 2139–2146 (2008). ArticleCASPubMed Google Scholar
Leijen, S. et al. A Phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor Selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumors. Cancer Chemother. Pharmacol.68, 1619–1628 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kirkwood, J. M. et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin. Cancer Res.18, 555–567 (2012). ArticleCASPubMed Google Scholar
Janne, P. A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, Phase 2 study. Lancet Oncol.14, 38–47 (2013). ArticlePubMedCAS Google Scholar
Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res.17, 989–1000 (2011). ArticleCASPubMed Google Scholar
Infante, J. R. et al. A Phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. Eur. J. Cancer49, 2077–2085 (2013). ArticleCASPubMed Google Scholar
Falchook, G. S. et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a Phase 1 dose-escalation trial. Lancet Oncol.13, 782–789 (2012). ArticleCASPubMedPubMed Central Google Scholar
Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. New Engl. J. Med.367, 107–114 (2012). ArticleCASPubMed Google Scholar
Carlino, M. S. et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol. Oncol.8, 544–554 (2014). ArticleCASPubMedPubMed Central Google Scholar
Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. New Engl. J. Med.367, 1694–1703 (2012). ArticleCASPubMed Google Scholar
Kim, K. et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br. J. Haematol.149, 537–549 (2010). ArticleCASPubMedPubMed Central Google Scholar
Choo, E. F. et al. Preclinical disposition of GDC-0973 and prospective and retrospective analysis of human dose and efficacy predictions. Drug Metabolism Dispos.40, 919–927 (2012). ArticleCAS Google Scholar
Iverson, C. et al. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res.69, 6839–6847 (2009). ArticleCASPubMed Google Scholar
Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature501, 232–236 (2013). ArticleCASPubMed Google Scholar
Dong, Q. et al. Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorg. Med. Chem. Lett.21, 1315–1319 (2011). ArticleCASPubMed Google Scholar
Martinez-Garcia, M. et al. First-in-human, Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin. Cancer Res.18, 4806–4819 (2012). ArticleCASPubMed Google Scholar
Leijen, S. et al. Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of the MEK inhibitor RO4987655 (CH4987655) in patients with advanced solid tumors. Clin. Cancer Res.18, 4794–4805 (2012). ArticleCASPubMed Google Scholar
Ascierto, P. A. et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label Phase 2 study. Lancet Oncol.14, 249–256 (2013). ArticleCASPubMed Google Scholar
Kim, K. B. et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic _BRAF_-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J. Clin. Oncol.31, 482–489 (2013). ArticleCASPubMed Google Scholar
Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell17, 215–224 (2005). ArticleCASPubMed Google Scholar
Ritt, D. A., Monson, D. M., Specht, S. I. & Morrison, D. K. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell. Biol.30, 806–819 (2010). ArticleCASPubMed Google Scholar
Fritsche-Guenther, R. et al. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol. Systems Biol.7, 489 (2011). ArticleCAS Google Scholar
Young, A., Lou, D. & McCormick, F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov.3, 112–123 (2013). ArticleCASPubMed Google Scholar
Ishii, N. et al. Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res.73, 4050–4060 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lito, P. et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell25, 697–710 (2014). ArticleCASPubMedPubMed Central Google Scholar
Boulton, T. G. et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell65, 663–675 (1991). ArticleCASPubMed Google Scholar
Haystead, T. A., Dent, P., Wu, J., Haystead, C. M. & Sturgill, T. W. Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett.306, 17–22 (1992). ArticleCASPubMed Google Scholar
Aronov, A. M. et al. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J. Med. Chem.52, 6362–6368 (2009). ArticleCASPubMed Google Scholar
Hatzivassiliou, G. et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther.11, 1143–1154 (2012). ArticleCASPubMed Google Scholar
Ohori, M. et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem. Biophys. Res. Commun.336, 357–363 (2005). ArticleCASPubMed Google Scholar
Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov.3, 742–750 (2013). ArticleCASPubMed Google Scholar
Sullivan, R. J. & Flaherty, K. T. Resistance to BRAF-targeted therapy in melanoma. Eur. J. Cancer49, 1297–1304 (2013). ArticleCASPubMed Google Scholar
Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov.2, 227–235 (2012). ArticleCASPubMedPubMed Central Google Scholar
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature483, 100–103 (2012). ArticleCASPubMed Google Scholar
Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov.3, 520–533 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature487, 505–509 (2012). ArticleCASPubMedPubMed Central Google Scholar
Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature487, 500–504 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell22, 668–682 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature508, 118–122 (2014). ArticleCASPubMed Google Scholar
Whittaker, S. R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov.3, 350–362 (2013). ArticleCASPubMedPubMed Central Google Scholar
Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov.3, 338–349 (2013). ArticleCASPubMed Google Scholar
Nissan, M. H. et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res.74, 2340–2350 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lin, L. et al. Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc. Natl Acad. Sci. USA111, E748–E757 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Commun.3, 724 (2012). ArticleCAS Google Scholar
Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell18, 683–695 (2010). ArticleCASPubMedPubMed Central Google Scholar
Girotti, M. R. et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov.3, 158–167 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res.68, 4853–4861 (2008). ArticleCASPubMedPubMed Central Google Scholar
Marusiak, A. A. et al. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Commun.5, 3901 (2014). ArticleCAS Google Scholar
Wagle, N. et al. MAP kinase pathway alterations in _BRAF_-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov.4, 61–68 (2014). ArticleCASPubMed Google Scholar
Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Onc. Abstr.28, 3534 (2010). Article Google Scholar
Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature494, 251–255 (2013). ArticleCASPubMed Google Scholar
Carlino, M. S. et al. Antiproliferative effects of continued mitogen-activated protein kinase pathway inhibition following acquired resistance to BRAF and/or MEK inhibition in melanoma. Mol. Cancer Ther.12, 1332–1342 (2013). ArticleCASPubMed Google Scholar
Deng, Y. et al. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase. J.Med.Chemhttp://dx.doi.org/10.1021/jm500847m (2014).
Chaikuad, A. et al. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nature Chem. Biol.10, 853–860 (2014). ArticleCAS Google Scholar