Coming of age: ten years of next-generation sequencing technologies (original) (raw)
Watson, J. D. & Crick, F. H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol.18, 123–131 (1953). ArticleCASPubMed Google Scholar
Mardis, E. R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. (Palo Alto Calif.)6, 287–303 (2013). This article provides a concise description of technological advancements supporting NGS. ArticleCAS Google Scholar
Wetterstrand, K. A. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute [online], http://www.genome.gov/sequencingcosts (updated 15 Jan 2016).
Kircher, M. & Kelso, J. High-throughput DNA sequencing — concepts and limitations. Bioessays32, 524–536 (2010). ArticleCASPubMed Google Scholar
Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol.2012, 251364 (2012). PubMedPubMed Central Google Scholar
Dressman, D., Yan, H., Traverso, G., Kinzler, K. W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl Acad. Sci. USA100, 8817–8822 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science309, 1728–1732 (2005). ArticleCASPubMed Google Scholar
Kim, J. B. et al. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science316, 1481–1484 (2007). ArticleCASPubMed Google Scholar
Leamon, J. H. et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis24, 3769–3777 (2003). ArticleCASPubMed Google Scholar
Fedurco, M., Romieu, A., Williams, S., Lawrence, I. & Turcatti, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res.34, e22 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science320, 106–109 (2008). ArticleCASPubMed Google Scholar
Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science327, 78–81 (2010). This paper describes the use of DNA nanoballs to achieve clonal amplification and the use of cPAL to achieve human genome sequencing as implemented by Complete Genomics (BGI). ArticleCASPubMed Google Scholar
Tomkinson, A. E., Vijayakumar, S., Pascal, J. M. & Ellenberger, T. DNA ligases: structure, reaction mechanism, and function. Chem. Rev.106, 687–699 (2006). ArticleCASPubMed Google Scholar
Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science241, 1077–1080 (1988). ArticleCASPubMed Google Scholar
Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res.18, 1051–1063 (2008). This paper describes the use of cleavable two-base-encoded probes to achieve genome-wide nucleosome mapping inCaenorhabditis elegans. This technology is implemented by Applied Biosystems (Thermo Fisher) for the SOLiD platform. ArticleCASPubMedPubMed Central Google Scholar
Metzker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet.11, 31–46 (2010). ArticleCASPubMed Google Scholar
Ju, J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl Acad. Sci. USA103, 19635–19640 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guo, J. et al. Four-color DNA sequencing with 3′-_O_-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc. Natl Acad. Sci. USA105, 9145–9150 (2008). ArticleCASPubMedPubMed Central Google Scholar
Smith, D. R. & McKernan, K. Methods of producing and sequencing modified polynucleotides. US Patent 8058030 (2011).
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature437, 376–380 (2005). This paper describes the development of the first NGS technology through the use of pyrosequencing. The authors demonstrate this method through sequencing of theMycoplasma genitaliumgenome. ArticleCASPubMedPubMed Central Google Scholar
Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature475, 348–352 (2011). This paper describes the first non-optical sequencing technology using a massively parallel semi-conductor device to monitor H+ release during DNA synthesis, as implemented by the Ion Torrent platform (Thermo Fisher). The authors demonstrate this technology by sequencing both bacterial and human DNA. ArticleCASPubMed Google Scholar
Rieber, N. et al. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. PLoS ONE8, e66621 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol.32, 246–251 (2014). ArticleCASPubMed Google Scholar
Nothnagel, M. et al. Technology-specific error signatures in the 1000 Genomes Project data. Hum. Genet.130, 505–516 (2011). ArticlePubMed Google Scholar
Shen, Y. Sarin, S., Liu, Y., Hobert, O. & Pe'er, I. Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing. PLoS ONE3, e4012 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Chan, M. et al. Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J. Mol. Diagnost.14, 602–612 (2012). ArticleCAS Google Scholar
Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol.10, R32 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature456, 53–59 (2008). This paper demonstrates the use of reversible dye-terminator chemistry for human genome sequencing. This platform is used by the Illumina suite of platforms. ArticleCASPubMedPubMed Central Google Scholar
Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res.36, e105 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol.12, R112 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sarin, S., Prabhu, S., O'Meara, M. M., Pe'er, I. & Hobert, O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat. Methods5, 865–867 (2008). ArticleCASPubMedPubMed Central Google Scholar
Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.10, 669–680 (2009). This review provides an overview of ChIP–seq methods for detecting chromatin–DNA interactions and their importance to epigenetics research. ArticleCASPubMedPubMed Central Google Scholar
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods10, 1213–1218 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res.19, 1044–1056 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10, 57–63 (2009). This review provides an overview of advances and challenges in techniques that are used in transcriptomic research with a specific focus in methods that use NGS technologies. ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. A trimming-and-retrieving alignment scheme for reduced representation bisulfite sequencing. Bioinformatics31, 2040–2042 (2015). ArticleCASPubMedPubMed Central Google Scholar
Forgetta, V. et al. Sequencing of the Dutch elm disease fungus genome using the Roche/454 GS-FLX Titanium System in a comparison of multiple genomics core facilities. J. Biomol. Tech.24, 39–49 (2013). PubMedPubMed Central Google Scholar
Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol.30, 434–439 (2012). ArticleCASPubMed Google Scholar
Malapelle, U. et al. Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J. Clin. Pathol.68, 64–68 (2015). ArticlePubMed Google Scholar
Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol.32, 915–925 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet.40, 722–729 (2008). ArticleCASPubMedPubMed Central Google Scholar
McCarroll, S. A. & Altshuler, D. M. Copy-number variation and association studies of human disease. Nat. Genet.39, S37–S42 (2007). ArticleCASPubMed Google Scholar
Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med.61, 437–455 (2010). ArticleCASPubMed Google Scholar
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). The authors describe the development of a real-time sequencing method using their zero-mode waveguide sensors as implemented by the Pacific Biosciences platform. The authors demonstrate the technique by sequencing synthetic DNA templates. ArticleCASPubMed Google Scholar
Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science299, 682–686 (2003). ArticleCASPubMed Google Scholar
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4, 265–270 (2009). The authors demonstrate the use of a mutant alpha-hemolysin for ordered, continuous detection of free nucleotides in solution. This work provides the basis for the approach used by ONT. ArticleCASPubMed Google Scholar
McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE9, e106689 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly of large genomes using second-generation sequencing. Genome Res.20, 1165–1173 (2010). ArticleCASPubMedPubMed Central Google Scholar
English, A. C. et al. Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genomics16, 286 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Carneiro, M. O. et al. Pacific Biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics13, 375 (2012). ArticleCASPubMedPubMed Central Google Scholar
Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics13, 341 (2012). ArticleCASPubMedPubMed Central Google Scholar
Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol.30, 693–700 (2012). ArticleCASPubMedPubMed Central Google Scholar
Larsen, P. A., Heilman, A. M. & Yoder, A. D. The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genomics15, 720 (2014). ArticlePubMedPubMed Central Google Scholar
Goodwin, S. et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res.25, 1750–1756 (2015). ArticleCASPubMedPubMed Central Google Scholar
Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet.11, 415–425 (2010). This review provides a comprehensive overview of advances in, and challenges of using, WGS for variant discovery in human disease. ArticleCASPubMed Google Scholar
UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature526, 82–90 (2015).
Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet.47, 435–444 (2015). ArticleCASPubMed Google Scholar
Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat. Genet.47, 1272–1281 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet.39, 1522–1527 (2015). This paper describes thein situcapture and selective enrichment of human exons for downstream NGS. This manuscript provides the methodological basis for whole-exome and targeted sequencing. ArticleCAS Google Scholar
O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature485, 246–250 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature485, 237–241 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rauch, C. et al. Towards an understanding of DNA recognition by the methyl-CpG binding domain 1. J. Biomol. Struct. Dyn.22, 695–706 (2005). ArticleCASPubMed Google Scholar
Oda, M. et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res.37, 3829–3839 (2009). ArticleCASPubMedPubMed Central Google Scholar
Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33, 5868–5877 (2005). ArticleCASPubMedPubMed Central Google Scholar
Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods7, 461–465 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wescoe, Z. L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc.136, 16582–16587 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lam, E. T. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol.30, 771–776 (2012). ArticleCASPubMed Google Scholar
Eichler, E. E., Clark, R. A. & She, X. An assessment of the sequence gaps: unfinished business in a finished human genome. Nat. Rev. Genet.5, 345–354 (2004). ArticleCASPubMed Google Scholar
Chaisson, M. J., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet.16, 627–640 (2015). ArticleCASPubMedPubMed Central Google Scholar
Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature517, 608–611 (2015). This article provides strong support for the utility of long-read sequencing for generating high-quality reference genomes. The authors demonstrate this by closing and/or extending gaps and resolving structural variants in the GRCh37 human reference genome. ArticleCASPubMed Google Scholar
Ritz, A. et al. Characterization of structural variants with single molecule and hybrid sequencing approaches. Bioinformatics30, 3458–3466 (2014). ArticleCASPubMedPubMed Central Google Scholar
Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet.16, 344–358 (2015). ArticleCASPubMed Google Scholar
Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature509, 371–375 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol.31, 1009–1014 (2013). ArticleCASPubMedPubMed Central Google Scholar
Quick, J. et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol.16, 114 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Schatz, M. C. & Langmead, B. The DNA data deluge: fast, efficient genome sequencing machines are spewing out more data than geneticists can analyze. IEEE Spectr.50, 26–33 (2013). ArticlePubMedPubMed Central Google Scholar
Gargis, A. S. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol.30, 1033–1036 (2012). ArticleCASPubMed Google Scholar
Chrystoja, C. C. & Diamandis, E. P. Whole genome sequencing as a diagnostic test: challenges and opportunities. Clin. Chem.60, 724–733 (2014). ArticleCASPubMed Google Scholar
Augenlicht, L. H. & Kobrin, D. Cloning and screening of sequences expressed in a mouse colon tumor. Cancer Res.42, 1088–1093 (1982). CASPubMed Google Scholar
Dandy, D. S., Wu, P. & Grainger, D. W. Array feature size influences nucleic acid surface capture in DNA microarrays. Proc. Natl Acad. Sci. USA104, 8223–8228 (2007). ArticleCASPubMedPubMed Central Google Scholar
Keating, B. J. et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS ONE3, e3583 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet.14, 457–460 (1996). ArticleCASPubMed Google Scholar
Alizadeh, A. A. & Staudt, L. M. Genomic-scale gene expression profiling of normal and malignant immune cells. Curr. Opin. Immunol.12, 219–225 (2000). ArticleCASPubMed Google Scholar
Rhodes, D. R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA101, 9309–9314 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vora, G. J., Meador, C. E., Stenger, D. A. & Andreadis, J. D. Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl. Environ. Microbiol.70, 3047–3054 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wilson, W. J. et al. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell Probes16, 119–127 (2002). ArticleCASPubMed Google Scholar
Imai, K., Kricka, L. J. & Fortina, P. Concordance study of 3 direct-to-consumer genetic-testing services. Clin. Chem.57, 518–521 (2011). ArticleCASPubMed Google Scholar
Jia, P., Wang, L., Meltzer, H. Y. & Zhao, Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr. Res.122, 38–42 (2010). ArticlePubMedPubMed Central Google Scholar
Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res.42, D1001–D1006 (2014). ArticleCASPubMed Google Scholar
Buck, M. J. & Lieb, J. D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83, 349–360 (2004). ArticleCASPubMed Google Scholar
Liang, L. et al. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res.23, 716–726 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhao, S., Fung-Leung, W. P., Bittner, A., Ngo, K. & Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE9, e78644 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA88, 7276–7280 (1991). ArticleCASPubMedPubMed Central Google Scholar
Morin, P. A. & McCarthy, M. Highly accurate SNP genotyping from historical and low-quality samples. Mol. Ecol. Notes7, 937–946 (2007). ArticleCAS Google Scholar
VanGuilder, H. D., Vrana, K. E. & Freeman, W. M. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques44, 619–626 (2008). ArticleCASPubMed Google Scholar
Weaver, S. et al. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods50, 271–276 (2010). ArticleCASPubMed Google Scholar
Sedlak, R. H., Cook, L., Cheng, A., Magaret, A. & Jerome, K. R. Clinical utility of droplet digital PCR for human cytomegalovirus. J. Clin. Microbiol.52, 2844–2848 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Kulkarni, M. M. in Current Protocols in Molecular Biology Ch. 25 (eds Ausubel, F. M. et al.) (Wiley, 2011). Google Scholar
Nielsen, T. et al. Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer14, 177 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ku, B. M. et al. High-throughput profiling identifies clinically actionable mutations in salivary duct carcinoma. J. Transl. Med.12, 299 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Sailani, M. R. et al. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res.23, 1410–1421 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lira, M. E. et al. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J. Mol. Diagn.15, 51–61 (2013). ArticleCASPubMed Google Scholar
Schwartz, D. C. et al. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science262, 110–114 (1993). ArticleCASPubMed Google Scholar
Hastie, A. R. et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS ONE8, e55864 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cao, H. et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience3, 34 (2014). ArticlePubMedPubMed Central Google Scholar
Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods12, 780–786 (2015). ArticleCASPubMedPubMed Central Google Scholar