Constraints and plasticity in genome and molecular-phenome evolution (original) (raw)
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983). Book Google Scholar
Lynch, M. The Origins of Genome Architecture (Sinauer Associates, Sunderland, Massachusetts, 2007). A definitive presentation of the population-genetic perspective on genome evolution, with an emphasis on effective population size as the dominant factor of evolution and a non-adaptive origin of genomic complexity. Google Scholar
Koonin, E. V. & Wolf, Y. I. Evolutionary systems biology: links between gene evolution and function. Curr. Opin. Biotechnol.17, 481–487 (2006). CASPubMed Google Scholar
Yamada, T. & Bork, P. Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nature Rev. Mol. Cell Biol.10, 791–803 (2009). CAS Google Scholar
Snell-Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J. & Moczek, A. P. Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. Bioessays32, 71–81 (2010). CASPubMedPubMed Central Google Scholar
Erwin, D. H. & Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nature Rev. Genet.10, 141–148 (2009). CASPubMed Google Scholar
Shabalina, S. A. & Kondrashov, A. S. Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet. Res.74, 23–30 (1999). CASPubMed Google Scholar
Margulies, E. H. et al. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. Genome Res.17, 760–774 (2007). CASPubMedPubMed Central Google Scholar
Petersen, L., Bollback, J. P., Dimmic, M., Hubisz, M. & Nielsen, R. Genes under positive selection in Escherichia coli. Genome Res.17, 1336–1343 (2007). CASPubMedPubMed Central Google Scholar
Muzzi, A., Moschioni, M., Covacci, A., Rappuoli, R. & Donati, C. Pilus operon evolution in Streptococcus pneumoniae is driven by positive selection and recombination. PLoS ONE3, e3660 (2008). PubMedPubMed Central Google Scholar
Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol.3, e170 (2005). PubMedPubMed Central Google Scholar
Turner, L. M., Chuong, E. B. & Hoekstra, H. E. Comparative analysis of testis protein evolution in rodents. Genetics179, 2075–2089 (2008). CASPubMedPubMed Central Google Scholar
Worth, C. L., Gong, S. & Blundell, T. L. Structural and functional constraints in the evolution of protein families. Nature Rev. Mol. Cell Biol.10, 709–720 (2009). CAS Google Scholar
Grishin, N. V., Wolf, Y. I. & Koonin, E. V. From complete genomes to measures of substitution rate variability within and between proteins. Genome Res.10, 991–1000 (2000). An early study that suggests that the evolutionary rates of orthologous genes from diverse life forms follow a universal distribution, and that derives a link between intra-gene and across-gene distributions of evolutionary rates. CASPubMedPubMed Central Google Scholar
Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet.39, 197–218 (2005). CASPubMed Google Scholar
Ohta, T. & Ina, Y. Variation in synonymous substitution rates among mammalian genes and the correlation between synonymous and nonsynonymous divergences. J. Mol. Evol.41, 717–720 (1995). CASPubMed Google Scholar
Makalowski, W. & Boguski, M. S. Synonymous and nonsynonymous substitution distances are correlated in mouse and rat genes. J. Mol. Evol.47, 119–121 (1998). CASPubMed Google Scholar
Ellegren, H. Comparative genomics and the study of evolution by natural selection. Mol. Ecol.17, 4586–4596 (2008). PubMed Google Scholar
Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nature Rev. Genet.10, 715–724 (2009). PubMed Google Scholar
Lynch, M. & Conery, J. S. The origins of genome complexity. Science302, 1401–1404 (2003). A seminal work that expounds the population-genetic perspective on the evolution of genomic complexity. The authors argue that genomic complexity is driven by weak purifying selection in populations with smallNe; in such populations, slightly deleterious features, such as gene duplications or introns, cannot be efficiently eliminated. Collected data onNeand genomic complexity in diverse life forms are shown to be compatible with this perspective, at least as a rough approximation. CASPubMed Google Scholar
Koonin, E. V. Evolution of genome architecture. Int. J. Biochem. Cell Biol.41, 298–306 (2009). CASPubMed Google Scholar
Harrison, P. M. & Gerstein, M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J. Mol. Biol.318, 1155–1174 (2002). CASPubMed Google Scholar
Monot, M. et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature Genet.41, 1282–1289 (2009). CASPubMed Google Scholar
Darby, A. C., Cho, N. H., Fuxelius, H. H., Westberg, J. & Andersson, S. G. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet.23, 511–520 (2007). CASPubMed Google Scholar
Molina, N. & van Nimwegen, E. Universal patterns of purifying selection at noncoding positions in bacteria. Genome Res.18, 148–160 (2008). A rigorous method for detecting purifying selection in groups of closely related prokaryotes was applied to the study of intergenic region evolution. Universal patterns of purifying selection were detected, and translation-initiation sites were found to be the elements subject to the strongest selective pressure. CASPubMedPubMed Central Google Scholar
Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the Drosophila genome? PLoS Genet.5, e1000495 (2009). A critical review of the evidence indicating that most sites in the fruitfly genome are subject to selection. PubMedPubMed Central Google Scholar
Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002). CASPubMed Google Scholar
Lunter, G., Ponting, C. P. & Hein, J. Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput. Biol.2, e5 (2006). PubMedPubMed Central Google Scholar
Wright, S. I. & Andolfatto, P. The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. Annu. Rev. Ecol. Syst.39, 193–213 (2008). Google Scholar
Gossmann, T. I. et al. Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Mol. Biol. Evol. 18 Mar 2010 (doi:10.1093/molbev/msq079). CASPubMedPubMed Central Google Scholar
Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature284, 601–603 (1980). CASPubMed Google Scholar
Bowen, N. J. & Jordan, I. K. Exaptation of protein coding sequences from transposable elements. Genome Dyn.3, 147–162 (2007). CASPubMed Google Scholar
Drake, J. A. et al. Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nature Genet.38, 223–227 (2006). CASPubMed Google Scholar
Shabalina, S. A., Ogurtsov, A. Y., Rogozin, I. B., Koonin, E. V. & Lipman, D. J. Comparative analysis of orthologous eukaryotic mRNAs: potential hidden functional signals. Nucleic Acids Res.32, 1774–1782 (2004). CASPubMedPubMed Central Google Scholar
Proux, E., Studer, R. A., Moretti, S. & Robinson-Rechavi, M. Selectome: a database of positive selection. Nucleic Acids Res.37, D404–D407 (2009). CASPubMed Google Scholar
Costa, F. F. Non-coding RNAs: new players in eukaryotic biology. Gene357, 83–94 (2005). CASPubMed Google Scholar
Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol.23, 578–587 (2008). PubMedPubMed Central Google Scholar
Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell136, 629–641 (2009). A detailed review of long non-coding (macro) RNAs, a recently discovered class of mammalian genes that comprise a substantial part of the RNome. CASPubMed Google Scholar
Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science306, 2242–2246 (2004). CASPubMed Google Scholar
Johnson, J. M., Edwards, S., Shoemaker, D. & Schadt, E. E. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet.21, 93–102 (2005). CASPubMed Google Scholar
Katzman, S. et al. Human genome ultraconserved elements are ultraselected. Science317, 915 (2007). A rigorous demonstration of the exceptionally strong selection that affects ultraconserved elements of mammalian genomes that are located outside protein-coding genes. CASPubMed Google Scholar
Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet.6, 151–157 (2005). CASPubMed Google Scholar
Elgar, G. Pan-vertebrate conserved non-coding sequences associated with developmental regulation. Brief. Funct. Genomic. Proteomic.8, 256–265 (2009). PubMed Google Scholar
Bejerano, G. et al. Ultraconserved elements in the human genome. Science304, 1321–1325 (2004). CASPubMed Google Scholar
Baira, E., Greshock, J., Coukos, G. & Zhang, L. Ultraconserved elements: genomics, function and disease. RNA Biol.5, 132–134 (2008). CASPubMed Google Scholar
Koonin, E. V., Aravind, L. & Kondrashov, A. S. The impact of comparative genomics on our understanding of evolution. Cell101, 573–576 (2000). CASPubMed Google Scholar
Wuchty, S. & Almaas, E. Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol.5, 24 (2005). PubMedPubMed Central Google Scholar
Basu, M. K., Carmel, L., Rogozin, I. B. & Koonin, E. V. Evolution of protein domain promiscuity in eukaryotes. Genome Res.18, 449–461 (2008). A quantitative comparative analysis of promiscuous domains across eukaryotic lineages, including demonstration of a positive correlation between domain promiscuity and the strength of purifying selection. CASPubMedPubMed Central Google Scholar
Rogozin, I. B., Wolf, Y. I., Sorokin, A. V., Mirkin, B. G. & Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol.13, 1512–1517 (2003). CASPubMed Google Scholar
Roy., S. W. & Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nature Rev. Genet.7, 211–221 (2006). PubMed Google Scholar
Roy., S. W. & Penny, D. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol.24, 171–181 (2007). CASPubMed Google Scholar
Carmel, L., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res.17, 1034–1044 (2007). A detailed analysis of differential dynamics of intron gain and loss across eukaryotic lineages reveals three distinct modes of evolution characterized by pervasive intron loss, equilibrium and relatively rare intron gain, respectively. CASPubMedPubMed Central Google Scholar
Carmel, L., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Patterns of intron gain and conservation in eukaryotic genes. BMC Evol. Biol.7, 192 (2007). PubMedPubMed Central Google Scholar
Koonin, E. V. & Wolf, Y. I. Genomics of Bacteria and Archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res.36, 6688–6719 (2008). CASPubMedPubMed Central Google Scholar
Novichkov, P. S., Wolf, Y. I., Dubchak, I. & Koonin, E. V. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bacteriol.191, 65–73 (2009). This study provides a comparative analysis of selective and neutral evolutionary processes between multiple bacterial and archaeal lineages. The article demonstrates high, variable rates of genome rearrangement and the lack of correlation between genome streamlining and selective constraints on sequence evolution. CASPubMed Google Scholar
Eisen, J. A., Heidelberg, J. F., White, O. & Salzberg, S. L. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol.1, research0011.1–research0011.9 (2000). Google Scholar
Zhou, F., Olman, V. & Xu, Y. Insertion sequences show diverse recent activities in Cyanobacteria and Archaea. BMC Genomics9, 36 (2008). PubMedPubMed Central Google Scholar
Rogozin, I. B. et al. Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res.30, 2212–2223 (2002). CASPubMedPubMed Central Google Scholar
Ling, X., He, X. & Xin, D. Detecting gene clusters under evolutionary constraint in a large number of genomes. Bioinformatics25, 571–577 (2009). CASPubMed Google Scholar
Wolf, Y. I., Rogozin, I. B., Kondrashov, A. S. & Koonin, E. V. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res.11, 356–372 (2001). CASPubMed Google Scholar
Lawrence, J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev.9, 642–648 (1999). CASPubMed Google Scholar
Rocha, E. P. The organization of the bacterial genome. Annu. Rev. Genet.42, 211–233 (2008). CASPubMed Google Scholar
Hurst, L. D., Pal, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet.5, 299–310 (2004). CASPubMed Google Scholar
Liao, B. Y. & Zhang, J. Coexpression of linked genes in Mammalian genomes is generally disadvantageous. Mol. Biol. Evol.25, 1555–1565 (2008). CASPubMedPubMed Central Google Scholar
Lemons, D. & McGinnis, W. Genomic evolution of Hox gene clusters. Science313, 1918–1922 (2006). CASPubMed Google Scholar
Wong, S. & Wolfe, K. H. Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nature Genet.37, 777–782 (2005). CASPubMed Google Scholar
Eichler, E. E. & Sankoff, D. Structural dynamics of eukaryotic chromosome evolution. Science301, 793–797 (2003). CASPubMed Google Scholar
Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol.1, 127–136 (2003). This article demonstrates the difference between the shrinking set of ubiquitously conserved orthologous genes and the larger minimal set of functional niches. Minimal gene sets are also examined in relation to different prokaryotic lifestyles. CAS Google Scholar
Moya, A. et al. Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev.33, 225–235 (2009). The latest update on minimal gene sets and the promise of synthetic biology forde novosynthesis of custom genomes. CASPubMed Google Scholar
Koonin, E. V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet.39, 309–338 (2005). CASPubMed Google Scholar
Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes [see comments]. Proc. Natl Acad. Sci. USA93, 10268–10273 (1996). CASPubMedPubMed Central Google Scholar
Charlebois, R. L. & Doolittle, W. F. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res.14, 2469–2477 (2004). CASPubMedPubMed Central Google Scholar
Koonin, E. V., Mushegian, A. R. & Bork, P. Non-orthologous gene displacement. Trends Genet.12, 334–336 (1996). CASPubMed Google Scholar
Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature463, 457–463 (2010). CASPubMedPubMed Central Google Scholar
Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1155 (2000). CASPubMed Google Scholar
Lespinet, O., Wolf, Y. I., Koonin, E. V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res.12, 1048–1059 (2002). CASPubMedPubMed Central Google Scholar
Huynen, M. A. & van Nimwegen, E. The frequency distribution of gene family sizes in complete genomes. Mol. Biol. Evol.15, 583–589 (1998). The authors report the discovery that the sizes of paralogous gene families follow a power-law-like distribution. They also present a simple model of gene family evolution. CASPubMed Google Scholar
Karev, G. P., Wolf, Y. I., Rzhetsky, A. Y., Berezovskaya, F. S. & Koonin, E. V. Birth and death of protein domains: a simple model of evolution explains power law behavior. BMC Evol. Biol.2, 18 (2002). PubMedPubMed Central Google Scholar
Koonin, E. V., Wolf, Y. I. & Karev, G. P. The structure of the protein universe and genome evolution. Nature420, 218–223 (2002). A discussion of non-adaptive models of genome evolution — in particular, how patterns of gene birth and death reproduce the observed size distributions of paralogous gene families. CASPubMed Google Scholar
Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science317, 86–94 (2007). CASPubMed Google Scholar
Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature454, 955–960 (2008). CASPubMed Google Scholar
Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res.13, 2229–2235 (2003). CASPubMedPubMed Central Google Scholar
Wolf, Y. I., Novichkov, P. S., Karev, G. P., Koonin, E. V. & Lipman, D. J. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc. Natl Acad. Sci. USA106, 7273–7280 (2009). This is the definitive demonstration of the universal character of the approximately log-normal distribution of the evolutionary rate of orthologous genes. The distribution of genes by age also follows a similar pattern. The article presents a simple, non-adaptive model according to which the universal distribution of gene-loss rates is a fundamental feature of genome evolution. CASPubMedPubMed Central Google Scholar
Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell134, 341–352 (2008). A comprehensive analysis of the anticorrelation between evolution rate and expression of protein-coding genes in a variety of model organisms. This is a definitive presentation of the mistranslation-induced misfolding hypothesis of protein evolution. CASPubMedPubMed Central Google Scholar
Pal, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nature Rev. Genet.7, 337–348 (2006). CASPubMed Google Scholar
Grosjean, H. & Fiers, W. Preferential codon usage in prokaryotic genes: the optimal codon–anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene18, 199–209 (1982). CASPubMed Google Scholar
Lipman, D. J. & Wilbur, W. J. Interaction of silent and replacement changes in eukaryotic coding sequences. J. Mol. Evol.21, 161–167 (1984). PubMed Google Scholar
Hershberg, R. & Petrov, D. A. Selection on codon bias. Annu. Rev. Genet.42, 287–299 (2008). CASPubMed Google Scholar
Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol.26, 1571–1580 (2009). CASPubMedPubMed Central Google Scholar
Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Universal distribution of protein evolution rates as a consequence of protein folding physics. Proc. Natl Acad. Sci. USA107, 2983–2988 (2010). The universal distribution of evolutionary rates among orthologues is reproduced under a simple model of protein folding and under the assumption that misfolding is the only source of fitness cost in protein evolution. CASPubMedPubMed Central Google Scholar
Wolf, Y. I., Carmel, L. & Koonin, E. V. Unifying measures of gene function and evolution. Proc. Biol. Sci.273, 1507–1515 (2006). A systematic analysis of correlations between evolutionary and molecular phenomic variables leads to the idea of 'gene status', according to which genes with a high expression level, a large number of physical or regulatory interactions and high values of other phenomic variables evolve slowly and are rarely lost in the course of evolution. CASPubMedPubMed Central Google Scholar
Jordan, I. K., Wolf, Y. I. & Koonin, E. V. No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol.3, 1 (2003). PubMedPubMed Central Google Scholar
Bloom, J. D. & Adami, C. Evolutionary rate depends on number of protein–protein interactions independently of gene expression level: response. BMC Evol. Biol.4, 14 (2004). PubMedPubMed Central Google Scholar
de Silva, E. et al. The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biol.4, 39 (2006). PubMedPubMed Central Google Scholar
Jordan, I. K., Wolf, Y. I. & Koonin, E. V. Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol. Biol.4, 22 (2004). PubMedPubMed Central Google Scholar
Jordan, I. K., Marino-Ramirez, L., Wolf, Y. I. & Koonin, E. V. Conservation and coevolution in the scale-free human gene coexpression network. Mol. Biol. Evol.21, 2058–2070 (2004). CASPubMed Google Scholar
Denver, D. R. et al. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nature Genet.37, 544–548 (2005). CASPubMed Google Scholar
Jordan, I. K., Marino-Ramirez, L. & Koonin, E. V. Evolutionary significance of gene expression divergence. Gene345, 119–126 (2005). CASPubMed Google Scholar
Liao, B. Y. & Zhang, J. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol. Biol. Evol.23, 530–540 (2006). CASPubMed Google Scholar
Gilad, Y., Oshlack, A. & Rifkin, S. A. Natural selection on gene expression. Trends Genet.22, 456–461 (2006). CASPubMed Google Scholar
Schrimpf, S. P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol.7, e48 (2009). PubMed Google Scholar
Weiss, M., Schrimpf, S., Hengartner, M. O., Lercher, M. J. & von Mering, C. Shotgun proteomics data from multiple organisms reveals remarkable quantitative conservation of the eukaryotic core proteome. Proteomics10, 1297–1306 (2010). This work extends the pioneering study reported in reference 108. The authors applied quantitative, highly accurate proteomic methods to reveal that the abundance of orthologous proteins is — unexpectedly — highly correlated among distantly related model organisms. CASPubMed Google Scholar
Wolf, Y. I., Gopich, I. V., Lipman, D. J. & Koonin, E. V. Relative contributions of intrinsic structural-functional constraints and translation rate to the evolution of protein-coding genes. Genome Biol. Evol. 17 Mar 2010 (doi:10.1093/gbe/evq010). PubMedPubMed Central Google Scholar
Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet.5, 101–113 (2004). CASPubMed Google Scholar
Bergmann, S., Ihmels, J. & Barkai, N. Similarities and differences in genome-wide expression data of six organisms. PLoS Biol.2, e9 (2004). PubMed Google Scholar
Tsaparas, P., Marino-Ramirez, L., Bodenreider, O., Koonin, E. V. & Jordan, I. K. Global similarity and local divergence in human and mouse gene co-expression networks. BMC Biol.6, 70 (2006). Google Scholar
Jordan, I. K., Katz, L. S., Denver, D. R. & Streelman, J. T. Natural selection governs local, but not global, evolutionary gene coexpression networks in Caenorhabditis elegans. BMC Syst. Biol.2, 96 (2008). PubMedPubMed Central Google Scholar
Lynch, M. The evolution of genetic networks by non-adaptive processes. Nature Rev. Genet.8, 803–813 (2007). A model of the evolution of biological networks that shows how characteristic network properties could evolve through non-adaptive processes of mutation, drift and recombination. CASPubMed Google Scholar
Kassen, R. Toward a general theory of adaptive radiation: insights from microbial experimental evolution. Ann. N. Y. Acad. Sci.1168, 3–22 (2009). PubMed Google Scholar
Jacob, F. Evolution and tinkering. Science196, 1161–1166 (1977). A seminal conceptual analysis emphasizing the importance of contingency in evolution: evolution is construed as a bricolage that makes use of pre-existing states and is fundamentally unpredictable. CASPubMed Google Scholar
Mani, G. S. & Clarke, B. C. Mutational order: a major stochastic process in evolution. Proc. R. Soc. Lond. B240, 29–37 (1990). CASPubMed Google Scholar
Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science312, 111–114 (2006). A key study on the landscape of protein evolution that revealed an unexpected level of constraint on evolutionary trajectories, apparently caused by interactions between mutations (epistasis). CASPubMed Google Scholar
Novais, A. et al. Evolutionary trajectories of b-lactamase CTX-M-1 cluster enzymes: predicting antibiotic resistance. PLoS Pathog.6, e1000735 (2010). PubMedPubMed Central Google Scholar
Barrick, J. E. & Lenski, R. E. Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 23 Sep 2009 (doi: 10.1101/sqb.2009.74.018). A summary of a series of long-term, extensive studies of bacterial populations in controlled experimental conditions. The studies revealed that evolutionary trajectories are affected by an interplay between contingency and constraint. CASPubMedPubMed Central Google Scholar
Stanek, M. T., Cooper, T. F. & Lenski, R. E. Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli. BMC Evol. Biol.9, 302 (2009). PubMedPubMed Central Google Scholar
Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA105, 7899–7906 (2008). CASPubMedPubMed Central Google Scholar
Stewart, C. B., Schilling, J. W. & Wilson, A. C. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature330, 401–404 (1987). CASPubMed Google Scholar
Yokoyama, R. & Yokoyama, S. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc. Natl Acad. Sci. USA87, 9315–9318 (1990). CASPubMedPubMed Central Google Scholar
Zhang, J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nature Genet.38, 819–823 (2006). CASPubMed Google Scholar
Li, Y., Liu, Z., Shi, P. & Zhang, J. The hearing gene Prestin unites echolocating bats and whales. Curr. Biol.20, R55–R56 (2010). CASPubMed Google Scholar
Mustonen, V. & Lassig, M. Fitness flux and ubiquity of adaptive evolution. Proc. Natl Acad. Sci. USA.107, 4248–4253 (2010). A reformulation of the principles of population genetics analogous to the transition from classic to non-equilibrium thermodynamics. The concept of fitness is replaced by fitness flux, and fitness landscape becomes a time-dependent seascape. CASPubMedPubMed Central Google Scholar
Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad. Sci. USA104 (Suppl. 1), 8597–8604 (2007). CASPubMedPubMed Central Google Scholar
Lynch, M. The origins of eukaryotic gene structure. Mol. Biol. Evol.23, 450–468 (2006). CASPubMed Google Scholar
Irimia, M., Penny, D. & Roy., S. W. Coevolution of genomic intron number and splice sites. Trends Genet.23, 321–325 (2007). A comparative analysis of splice sites showing that intron-poor organisms possess highly conserved splice sites that adhere to a strict consensus, whereas intron-rich genomes contain weak splice sites. A crucial corollary is that the evolution of alternative splicing is conditioned on relatively inefficient splice sites that are prevalent in organisms with weak selective pressure. CASPubMed Google Scholar
Irimia, M. & Roy, S. W. Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet.4, e1000148 (2008). PubMedPubMed Central Google Scholar
Irimia, M. et al. Complex selection on 5′ splice sites in intron-rich organisms. Genome Res.19, 2021–2027 (2009). CASPubMedPubMed Central Google Scholar
Lynch, M. Streamlining and simplification of microbial genome architecture. Annu. Rev. Microbiol.60, 327–349 (2006). CASPubMed Google Scholar
Wagner, A. Robustness, evolvability, and neutrality. FEBS Lett.579, 1772–1778 (2005). CASPubMed Google Scholar
Dobrindt, U. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol.185, 1831–1840 (2003). CASPubMedPubMed Central Google Scholar
Lozada-Chavez, I., Janga, S. C. & Collado-Vides, J. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res.34, 3434–3445 (2006). CASPubMedPubMed Central Google Scholar
Kazakov, A. E. et al. Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. J. Bacteriol.191, 52–64 (2009). CASPubMed Google Scholar
Wagner, A. Neutralism and selectionism: a network-based reconciliation. Nature Rev. Genet.9, 965–974 (2008). A conceptual perspective on (nearly) neutral networks that reconciles the neutralistic and adaptationist paradigms of evolution by showing how initially neutral mutations form the basis for subsequent adaptation. CASPubMed Google Scholar
Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature424, 549–552 (2003). CASPubMed Google Scholar
Levy, S. F. & Siegal, M. L. Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol.6, e264 (2008). An experimental demonstration of the unexpectedly large number of evolution capacitors among yeast genes, a finding that validates the theoretical predictions of reference 141. PubMedPubMed Central Google Scholar
Wang, Z. & Zhang, J. Abundant indispensable redundancies in cellular metabolic networks. Genome Biol. Evol.2009, 23–33 (2009). Google Scholar
Wilkins, A. S. Between 'design' and 'bricolage': genetic networks, levels of selection, and adaptive evolution. Proc. Natl Acad. Sci. USA104 (Suppl. 1), 8590–8596 (2007). CASPubMedPubMed Central Google Scholar
Resch, A. M. et al. Widespread positive selection in synonymous sites of mammalian genes. Mol. Biol. Evol.24, 1821–1831 (2007). CASPubMed Google Scholar
Parsch, J., Novozhilov, S., Saminadin-Peter, S. S., Wong, K. M. & Andolfatto, P. On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila . Mol. Biol. Evol.27, 1226–1234 (2010). CAS Google Scholar
Ellegren, H., Smith, N. G. & Webster, M. T. Mutation rate variation in the mammalian genome. Curr. Opin. Genet. Dev.13, 562–568 (2003). CASPubMed Google Scholar
Charlesworth, J. & Eyre-Walker, A. The McDonald–Kreitman test and slightly deleterious mutations. Mol. Biol. Evol.25, 1007–1015 (2008). CASPubMed Google Scholar
Eyre-Walker, A. & Keightley, P. D. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol.26, 2097–2108 (2009). CASPubMed Google Scholar
Hurst, L. D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet.18, 486–487 (2002). PubMed Google Scholar
van Nimwegen, E. Scaling laws in the functional content of genomes. Trends Genet.19, 479–484 (2003). A key study that reveals distinct scaling laws for different functional classes of genes and their virtual universality across a broad range of taxa. CASPubMed Google Scholar
Molina, N. & van Nimwegen, E. Scaling laws in functional genome content across prokaryotic clades and lifestyles. Trends Genet.25, 243–247 (2009). CASPubMed Google Scholar
Maslov, S., Krishna, S., Pang, T. Y. & Sneppen, K. Toolbox model of evolution of prokaryotic metabolic networks and their regulation. Proc. Natl Acad. Sci. USA106, 9743–9748 (2009). A simple model of evolution of metabolic networks that explains the universal scaling laws for regulators and enzymes. CASPubMedPubMed Central Google Scholar
Lipman, D. J. & Wilbur, W. J. Modelling neutral and selective evolution of protein folding. Proc. Biol. Sci.245, 7–11 (1991). CASPubMed Google Scholar
Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA102, 14338–14343 (2005). CASPubMedPubMed Central Google Scholar
Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA13, 87–96 (2007). CASPubMedPubMed Central Google Scholar
Whitehead, D. J., Wilke, C. O., Vernazobres, D. & Bornberg-Bauer, E. The look-ahead effect of phenotypic mutations. Biol. Direct3, 18 (2008). A modelling study that demonstrates the possibility of evolutionary capacitation through synergistic interactions between mutations and errors of transcription and translation (phenotypic mutations). PubMedPubMed Central Google Scholar