Single-cell sequencing-based technologies will revolutionize whole-organism science (original) (raw)
Wetterstrand, K. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program [online] (2013).
Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis.13, 137–146 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Lander, E. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature491, 56–65 (2012).
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nature Protoc.6, 468–481 (2011). ArticleCAS Google Scholar
Darmanis, S. et al. ProteinSeq: high-performance proteomic analyses by proximity ligation and next generation sequencing. PLoS ONE6, e25583 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science338, 1622–1626 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Kalisky, T., Blainey, P. & Quake, S. R. Genomic analysis at the single-cell level. Annu. Rev. Genet.45, 431–445 (2011). ArticleCASPubMed Google Scholar
Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotech.30, 777–782 (2012). This paper described the first single-cell RNA-seq method to achieve near full-length coverage of transcripts, and demonstrated transcriptome sequencing from single circulating tumour cells. ArticleCAS Google Scholar
Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nature Biotech.29, 1120–1127 (2011). ArticleCAS Google Scholar
Cristofanilli, M. et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol.23, 1420–1430 (2005). ArticlePubMed Google Scholar
Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev.37, 407–427 (2013). A review of single-cell genomics of microorganisms, including currently available WGA techniques. ArticleCASPubMed Google Scholar
Gundry, M., Li, W., Maqbool, S. B. & Vijg, J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res.40, 2032–2040 (2012). ArticleCASPubMed Google Scholar
Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U. & Shapiro, E. Genomic variability within an organism exposes its cell lineage tree. PLoS Computat. Biol.1, 382–394 (2005). A conceptual and theoretical basis for organism cell lineage tree reconstruction using the genomic variability among organismal cells. It is also a preliminary proof-of-concept demonstration of reconstructing cell lineage trees using somatic mutations in a small panel of microsatellites. CAS Google Scholar
Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nature Protoc.2, 739–752 (2007). ArticleCAS Google Scholar
Shlush, L. I. et al. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and miscrosatellite instability. Blood120, 603–612 (2012). ArticleCASPubMed Google Scholar
Choi, J. H. et al. Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol. Prog.26, 888–895 (2010). ArticleCASPubMed Google Scholar
Frumkin, D. et al. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnol.8, 17 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Bhattacherjee, V. et al. Laser capture microdissection of fluorescently labeled embryonic cranial neural crest cells. Genesis39, 58–64 (2004). ArticleCASPubMed Google Scholar
Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab. Chip12, 2146–2155 (2012). ArticleCASPubMed Google Scholar
Fan, H., Wang, J., Potanina, A. & Quake, S. Whole-genome molecular haplotyping of single cells. Nature Biotech.29, 51–57 (2011). ArticleCAS Google Scholar
Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell150, 402–412 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Lecault, V., White, A. K., Singhal, A. & Hansen, C. L. Microfluidic single cell analysis: from promise to practice. Curr. Opin. Chem. Biol.16, 381–390 (2012). ArticleCASPubMed Google Scholar
Schatz, D. G. & Swanson, P. C. V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet.45, 167–202 (2011). ArticleCASPubMed Google Scholar
Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nature Rev. Genet.13, 795–806 (2012). ArticleCASPubMed Google Scholar
Szabat, M. et al. Maintenance of β-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes61, 1365–1371 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Ming, G. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron70, 687–702 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chojnacki, A. K., Mak, G. K. & Weiss, S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nature Rev. Neurosci.10, 153–163 (2009). ArticleCAS Google Scholar
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). ArticleCASPubMed Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science337, 730–735 (2012). ArticleCASPubMed Google Scholar
Carlson, C. et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nature Methods9, 78–80 (2012). ArticleCAS Google Scholar
Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nature Rev. Genet.5, 435–445 (2004). ArticleCASPubMed Google Scholar
Wasserstrom, A. et al. Estimating cell depth from somatic mutations. PLoS Computat. Biol.4, e1000058 (2008). Google Scholar
Segev, E. et al. Muscle-bound primordial stem cells give rise to myofiber-associated myogenic and non-myogenic progenitors. PLoS ONE6, e25605 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Fidler, I. & Kripke, M. Metastasis results from preexisting variant cells within a malignant-tumor. Science197, 893–895 (1977). ArticleCASPubMed Google Scholar
Pawelek, J. M. & Chakraborty, A. K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nature Rev. Cancer8, 377–386 (2008). ArticleCAS Google Scholar
Lazova, R. et al. A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS ONE8, e66731 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Blagosklonny, M. V. Target for cancer therapy: proliferating cells or stem cells. Leukemia20, 385–391 (2006). ArticleCASPubMed Google Scholar
Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell148, 886–895 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469, 356–361 (2011). ArticleCASPubMed Google Scholar
Baslan, T. et al. Genome-wide copy number analysis of single cells. Nature Protoc.7, 1024–1041 (2012). ArticleCAS Google Scholar
Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell148, 873–885 (2012). ArticleCASPubMed Google Scholar
Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl Med.4, 149ra118 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). An exposition of the heterogeneity within different regions in a single tumour, demonstrating the importance of the integration of several analysis methods including DNA and RNA sequencing. PubMedPubMed CentralCAS Google Scholar
Cheung, V. & Nelson, S. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc. Natl Acad. Sci. USA93, 14676–14679 (1996). ArticleCASPubMedPubMed Central Google Scholar
Arneson, N., Hughes, S., Houlston, R. & Done, S. Whole-genome amplification by improved primer extension preamplification PCR (I-PEP-PCR). CSH Protoc.2008, pdb.prot4921 (2008). PubMed Google Scholar
Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA96, 4494–4499 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dean, F. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA99, 5261–5266 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science338, 1627–1630 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Peng, W., Takabayashi, H. & Ikawa, K. Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur. J. Obstet. Gynecol. Reprod. Biol.131, 13–20 (2007). ArticleCASPubMed Google Scholar
Salipante, S. J., Kas, A., McMonagle, E. & Horwitz, M. S. Phylogenetic analysis of developmental and postnatal mouse cell lineages. Evol. Dev.12, 84–94 (2010). ArticlePubMedPubMed Central Google Scholar
Zaretsky, I. et al. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays. Lab. Chip12, 5007–5015 (2012). ArticleCASPubMed Google Scholar
Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science320, 106–109 (2008). ArticleCASPubMed Google Scholar
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). ArticleCASPubMed Google Scholar
Schadt, E., Turner, S. & Kasarskis, A. A window into third-generation sequencing. Hum. Mol. Genet.19, R227–R240 (2010). ArticleCASPubMed Google Scholar
Xu, M., Fujita, D. & Hanagata, N. Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small5, 2638–2649 (2009). ArticleCASPubMed Google Scholar
Giulino-Roth, L. et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood120, 5181–5184 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Valencia, C. A. et al. Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS ONE8, e53083 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Hollants, S., Redeker, E. & Matthijs, G. Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin. Chem.58, 717–724 (2012). ArticleCASPubMed Google Scholar
Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nature Biotech.27, 1025–1031 (2009). ArticleCAS Google Scholar
Johansson, H. et al. Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res.39, e8 (2011). ArticleCASPubMed Google Scholar
Diaz-Horta, O. et al. Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS ONE7, e50628 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nature Rev. Genet.9, 868–882 (2008). In this Review, the author discusses the origin and evolution of diverse cell types in animals, an issue that has been curiously neglected by biologists. ArticleCASPubMed Google Scholar
Vickaryous, M. K. & Hall, B. K. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol. Rev. Cambridge Philos. Soc.81, 425–455 (2006). This paper is a careful review of all human cell types that have been given names in the literature, which is a useful starting point for future cell-type discovery experiments. ArticlePubMed Google Scholar
Gehlenborg, N. et al. Visualization of omics data for systems biology. Nature Methods7, S56–S68 (2010). ArticleCASPubMed Google Scholar
Johnston, I. G. et al. Mitochondrial variability as a source of extrinsic cellular noise. PLoS Computat. Biol.8, e1002416 (2012). ArticleCAS Google Scholar
Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol.4, e309 (2006). This study using single-molecule imaging of mRNAs shows that mRNA abundances vary tremendously within putatively homogenous cell populations, and provides initial estimates of transcriptional burst kinetics in mammalian cells. ArticlePubMedPubMed CentralCAS Google Scholar
Casbon, J. A., Osborne, R. J., Brenner, S. & Lichtenstein, C. P. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res.39, e81 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nature Methods9, 72–74 (2011). ArticleCASPubMed Google Scholar
Shiroguchi, K., Jia, T. Z., Sims, P. A. & Xie, X. S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl Acad. Sci. USA109, 1347–1352 (2012). ArticlePubMedPubMed Central Google Scholar
Fu, G. K., Hu, J., Wang, P. H. & Fodor, S. P. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc. Natl Acad. Sci. USA108, 9026–9031 (2011). ArticlePubMedPubMed Central Google Scholar
Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA108, 9530–9535 (2011). ArticlePubMedPubMed Central Google Scholar
Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep.2, 666–673 (2012). ArticleCASPubMed Google Scholar
Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nature Biotech.20, 387–392 (2002). This study reported a simultaneous genomic and transcriptomic analysis of individual cells using a microarray readout. This is a first example of an integrated single-cell analysis. ArticleCAS Google Scholar
Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res.34, e42 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods6, 377–382 (2009). The first demonstration of single-cell RNA-seq with accurate detection of alternatively spliced transcripts in single mouse oocytes. ArticleCASPubMed Google Scholar
Maleszka, R. & Stange, G. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene202, 39–43 (1997). ArticleCASPubMed Google Scholar
Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res.21, 1160–1167 (2011). The first demonstration of highly multiplexed single-cell RNA-seq showing that cell types can be distinguished in an unbiased manner on the basis of unfiltered single-cell gene expression profiles. ArticlePubMedPubMed CentralCAS Google Scholar
Taylor, K. H. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res.67, 8511–8518 (2007). ArticleCASPubMed Google Scholar
Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genet.44, 1207–1214 (2012). ArticleCASPubMed Google Scholar
Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res.36, 5221–5231 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). ArticleCASPubMed Google Scholar
van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods9, 969–972 (2012). ArticleCASPubMed Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Denomme, M. M., Zhang, L. & Mann, M. R. Single oocyte bisulfite mutagenesis. J. Vis. Exp.64, e4046 (2012). Google Scholar
Hayashi-Takanaka, Y. et al. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res.39, 6475–6488 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Siegmund, K., Marjoram, P., Woo, Y., Tavare, S. & Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA106, 4828–4833 (2009). ArticlePubMedPubMed Central Google Scholar
Nicolas, P., Kim, K., Shibata, D. & Tavare, S. The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Computat. Biol.3, 364–374 (2007). CAS Google Scholar
Yatabe, Y., Tavaré, S. & Shibata, D. Investigating stem cells in human colon by using methylation patterns. Proc. Natl Acad. Sci. USA98, 10839–10844 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. M. & Shibata, D. Methylation reveals a niche: stem cell succession in human colon crypts. Oncogene21, 5441–5449 (2002). ArticleCASPubMed Google Scholar
Hodgkinson, V., ElFadl, D., Drew, P., Lind, M. & Cawkwell, L. Repeatedly identified differentially expressed proteins (RIDEPs) from antibody microarray proteomic analysis. J. Proteom.74, 698–703 (2011). ArticleCAS Google Scholar
Bendall, S. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science332, 687–696 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, H. W. et al. Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Nature Commun.4, 1505 (2013). ArticleCAS Google Scholar
Keshishian, H. et al. Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell Proteom.8, 2339–2349 (2009). ArticleCAS Google Scholar
Niemeyer, C., Adler, M. & Wacker, R. Detecting antigens by quantitative immuno-PCR. Nature Protoc.2, 1918–1930 (2007). ArticleCAS Google Scholar
Fredriksson, S. et al. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nature Methods4, 327–329 (2007). ArticleCASPubMed Google Scholar
Turner, D. J. et al. Toward clinical proteomics on a next-generation sequencing platform. Anal. Chem.83, 666–670 (2011). ArticleCASPubMed Google Scholar
Salehi-Reyhani, A. et al. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab. Chip11, 1256–1261 (2011). ArticleCASPubMed Google Scholar
Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA109, 419–424 (2012). ArticlePubMed Google Scholar
Li, G. W. & Xie, X. S. Central dogma at the single-molecule level in living cells. Nature475, 308–315 (2011). A review of the central dogma of molecular biology in terms of stochastic kinetics in single cells and of imaging-based methods for single-cell and single-molecule analysis. ArticlePubMedPubMed CentralCAS Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100, 64–119 (1983). ArticleCASPubMed Google Scholar
Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol.56, 110–156 (1977). The first reconstruction of a complete organism cell lineage, of theC. elegansnematode, published almost four decades ago. Complete cell lineage trees of higher organisms are yet to be reconstructed. ArticleCASPubMed Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004). ArticleCASPubMed Google Scholar
Murray, J. et al. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nature Methods5, 703–709 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
DeKosky, B. J. et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nature Biotech.31, 166–169 (2013). ArticleCAS Google Scholar
Timmermann, B. et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS ONE5, e15661 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods5, 613–619 (2008). ArticleCASPubMed Google Scholar
Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol.14, R31 (2013). ArticlePubMedPubMed CentralCAS Google Scholar