- Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).
Article CAS PubMed Google Scholar
- Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Rev. Genet. 13, 484–492 (2012).
Article CAS PubMed Google Scholar
- Branco, M. R., Ficz, G. & Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Rev. Genet. 13, 7–13 (2012).
Article CAS Google Scholar
- Bhutani, N., Burns, D. M. & Blau, H. M. DNA demethylation dynamics. Cell 146, 866–872 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
CAS PubMed Google Scholar
- Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nature Rev. Genet. 8, 829–833 (2007).
Article CAS PubMed Google Scholar
- Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet. 7, 715–727 (2006).
Article CAS PubMed Google Scholar
- Bird, A. Molecular biology. Methylation talk between histones and DNA. Science. 294, 2113–2115 (2001).
Article CAS PubMed Google Scholar
- He, C. Grand challenge commentary: RNA epigenetics? Nature Chem. Biol. 6, 863–865 (2010).
Article CAS Google Scholar
- Grosjean, H. & Benne, R. Modification and Editing of RNA (American Society for Microbiology Press, 1998).
Book Google Scholar
- Grosjean, H. Fine-Tuning of RNA Functions by Modification and Editing (Springer-Verlag, 2005).
Book Google Scholar
- Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways — 2013 update. Nucleic Acids Res. 41, D262–D267 (2013).
Article CAS PubMed Google Scholar
- Motorin, Y. & Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA 2, 611–631 (2011).
Article CAS PubMed Google Scholar
- Jia, G. et al. _N_6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chem. Biol. 7, 885–887 (2011). This work describes a major breakthrough of discovering the first m 6 A RNA demethylase FTO, which highlights the possible biological function of m 6 A.
Article CAS Google Scholar
- Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013). This study discovered the second mammalian m 6 A demethylase ALKBH5 that affects mouse spermatogenesis.
Article CAS PubMed Google Scholar
- Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).
CAS PubMed Google Scholar
- Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012). References 17 and 18 revealed, for the first time, the transcriptome-wide distributions of m 6 A in mammalian genomes.
Article CAS PubMed PubMed Central Google Scholar
- Wei, C. M., Gershowitz, A. & Moss, B. Methylated nucleotides block 5′ terminus of HeLa-cell messenger-RNA. Cell 4, 379–386 (1975).
Article CAS PubMed Google Scholar
- Krug, R. M., Morgan, M. A. & Shatkin, A. J. Influenza viral mRNA contains internal _N_6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20, 45–53 (1976).
CAS PubMed PubMed Central Google Scholar
- Rottman, F. M., Desrosiers, R. C. & Friderici, K. Nucleotide methylation patterns in eukaryotic mRNA. Prog. Nucleic Acid. Res. Mol. Biol. 19, 21–38 (1976).
Article CAS PubMed Google Scholar
- Beemon, K. & Keith, J. Localization of _N_6-methyladenosine in the Rous sarcoma virus genome. J. Mol. Biol. 113, 165–179 (1977).
Article CAS PubMed Google Scholar
- Schibler, U., Kelley, D. E. & Perry, R. P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115, 695–714 (1977).
Article CAS PubMed Google Scholar
- Wei, C. M. & Moss, B. Nucleotide sequences at the _N_6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676 (1977).
Article CAS PubMed Google Scholar
- Narayan, P. & Rottman, F. M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science 242, 1159–1162 (1988).
Article CAS PubMed Google Scholar
- Csepany, T., Lin, A., Baldick, C. J. Jr & Beemon, K. Sequence specificity of mRNA _N_6-adenosine methyltransferase. J. Biol. Chem. 265, 20117–20122 (1990).
CAS PubMed Google Scholar
- Narayan, P., Ludwiczak, R. L., Goodwin, E. C. & Rottman, F. M. Context effects on _N_6-adenosine methylation sites in prolactin mRNA. Nucleic Acids Res. 22, 419–426 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Rottman, F., Shatkin, A. J. & Perry, R. P. Sequences containing methylated nucleotides at 5′ termini of messenger-RNAs — possible implications for processing. Cell 3, 197–199 (1974).
Article CAS PubMed Google Scholar
- Bodi, Z., Button, J. D., Grierson, D. & Fray, R. G. Yeast targets for mRNA methylation. Nucleic Acids Res. 38, 5327–5335 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Keith, G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie 77, 142–144 (1995).
Article CAS PubMed Google Scholar
- Clancy, M. J., Shambaugh, M. E., Timpte, C. S. & Bokar, J. A. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of _N_6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30, 4509–4518 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013). This study reveals the dynamics of transcriptome-wide m 6 A changes during yeast meiosis.
Article CAS PubMed PubMed Central Google Scholar
- Liu, N. et al. Probing _N_6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Carroll, S. M., Narayan, P. & Rottman, F. M. _N_6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell. Biol. 10, 4456–4465 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Kierzek, E. & Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing _N_6-alkyladenosines and 2-methylthio-_N_6-alkyladenosines. Nucleic Acids Res. 31, 4472–4480 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Harcourt, E. M., Ehrenschwender, T., Batista, P. J., Chang, H. Y. & Kool, E. T. Identification of a selective polymerase enables detection of _N_6-methyladenosine in RNA. J. Am. Chem. Soc. 135, 19079–19082 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Vilfan, I. D. et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnol. 11, 8 (2013).
Article CAS Google Scholar
- Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. & Rottman, F. M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (_N_6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997). This pivotal study identifies METTL3 as a key SAM-binding subunit of the RNA methyltransferase complex.
CAS PubMed PubMed Central Google Scholar
- Bokar, J. A. in Fine-Tuning of RNA Functions by Modification and Editing 141–177 (Springer-Verlag, 2005).
Book Google Scholar
- Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA _N_6-adenosine methylation. Nature Chem. Biol. 10, 93–95 (2014). This paper uncovers the core components of the m 6 A RNA methyltransferase complex and reveals an overall negative correlation between the levels of m 6 A mRNA methylation and gene expression.
Article CAS Google Scholar
- Bujnicki, J. M., Feder, M., Radlinska, M. & Blumenthal, R. M. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m6A methyltransferase. J. Mol. Evol. 55, 431–444 (2002).
Article CAS PubMed Google Scholar
- Wang, Y. et al. _N_6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature Cell Biol. 16, 191–198 (2014). This study discovered that the m 6 A modification on mRNA affects embryonic cell differentiation.
Article CAS PubMed Google Scholar
- Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 18, 2269–2276 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Ozanick, S., Krecic, A., Andersland, J. & Anderson, J. T. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA 11, 1281–1290 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Leulliot, N. et al. Structure of the yeast tRNA m7G methylation complex. Structure 16, 52–61 (2008).
Article CAS PubMed Google Scholar
- Zhong, S. et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Agarwala, S. D., Blitzblau, H. G., Hochwagen, A. & Fink, G. R. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 8, e1002732 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Little, N. A., Hastie, N. D. & Davies, R. C. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum. Mol. Genet. 9, 2231–2239 (2000).
Article CAS PubMed Google Scholar
- Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA _N_6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Horiuchi, K. et al. Identification of Wilms' Tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 288, 33292–33302 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Bodi, Z. et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front. Plant Sci. 3, 48 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hongay, C. F. & Orr-Weaver, T. L. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc. Natl Acad. Sci. USA 108, 14855–14860 (2011).
Article PubMed PubMed Central Google Scholar
- Peters, T., Ausmeier, K. & Ruther, U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm. Genome 10, 983–986 (1999).
Article CAS PubMed Google Scholar
- Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genet. 39, 724–726 (2007).
Article CAS PubMed Google Scholar
- Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898 (2009).
Article CAS PubMed Google Scholar
- Church, C. et al. Overexpression of Fto leads to increased food intake and results in obesity. Nature Genet. 42, 1086–1092 (2010).
Article CAS PubMed Google Scholar
- Boissel, S. et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85, 106–111 (2009).
Article CAS PubMed PubMed Central Google Scholar
- He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Jia, G. et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582, 3313–3319 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Hess, M. E. et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nature Neurosci. 16, 1042–1048 (2013).
Article CAS PubMed Google Scholar
- Gulati, P. et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc. Natl Acad. Sci. USA 110, 2557–2562 (2013).
Article PubMed PubMed Central Google Scholar
- Han, Z. et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464, 1205–1209 (2010).
Article CAS PubMed Google Scholar
- Zheng, G. et al. Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases. RNA Biol. 10, 915–918 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).
Article CAS PubMed Google Scholar
- Fu, Y. et al. FTO-mediated formation of _N_6-hydroxymethyladenosine and _N_6-formyladenosine in mammalian RNA. Nature Commun. 4, 1798 (2013).
Article CAS Google Scholar
- Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
Article CAS PubMed Google Scholar
- Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotech. 29, 436–442 (2011).
Article CAS Google Scholar
- Robbens, S. et al. The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J. Mol. Evol. 66, 80–84 (2008).
Article CAS PubMed Google Scholar
- Iyer, L. M., Tahiliani, M., Rao, A. & Aravind, L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698–1710 (2009).
Article CAS PubMed Google Scholar
- Wang, X. et al. _N_6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014). This work presents the first m 6 A reader protein to be characterized, YTHDF2, and a main function of m 6 A: YTHDF2 mediates the m 6 A-dependent RNA decay by targeting RNA substrates to P-bodies.
Article CAS PubMed Google Scholar
- Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nature Rev. Genet. 13, 246–259 (2012).
Article CAS PubMed Google Scholar
- Isken, O. & Maquat, L. E. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nature Rev. Genet. 9, 699–712 (2008).
Article CAS PubMed Google Scholar
- Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nature Rev. Genet. 9, 843–854 (2008).
Article CAS PubMed Google Scholar
- Dasgupta, T. & Ladd, A. N. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip. Rev. RNA 3, 104–121 (2012).
Article CAS PubMed Google Scholar
- Yang, F. & Schoenberg, D. R. Endonuclease-mediated mRNA decay involves the selective targeting of PMR1 to polyribosome-bound substrate mRNA. Mol. Cell 14, 435–445 (2004).
Article CAS PubMed Google Scholar
- Ghosh, S. & Jacobson, A. RNA decay modulates gene expression and controls its fidelity. Wiley Interdiscip. Rev. RNA 1, 351–361 (2010).
Article CAS PubMed PubMed Central Google Scholar
- He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).
Article CAS PubMed Google Scholar
- Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nature Rev. Mol. Cell Biol. 14, 475–488 (2013).
Article CAS Google Scholar
- Harigaya, Y. et al. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442, 45–50 (2006).
Article CAS PubMed Google Scholar
- Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
Article CAS PubMed Google Scholar
- Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143, 1–20 (2008).
Article CAS PubMed Google Scholar
- Newby, M. I. & Greenbaum, N. L. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nature Struct. Biol. 9, 958–965 (2002).
Article CAS PubMed Google Scholar
- Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).
Article CAS PubMed Google Scholar
- Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Srikantan, S. & Gorospe, M. UneCLIPsing HuR nuclear function. Mol. Cell 43, 319–321 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Dormoy-Raclet, V. et al. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Commun. 4, 2388 (2013).
Article Google Scholar
- Barnhart, M. D., Moon, S. L., Emch, A. W., Wilusz, C. J. & Wilusz, J. Changes in cellular mRNA stability, splicing, and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. Cell Rep. 5, 909–917 (2013).
Article CAS PubMed Google Scholar
- Abdelmohsen, K. & Gorospe, M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA 1, 214–229 (2010).
Article CAS PubMed Google Scholar
- Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).
Article CAS PubMed Google Scholar
- Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet. 8, 93–103 (2007).
Article CAS PubMed Google Scholar
- Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).
Article CAS PubMed Google Scholar
- Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).
Article CAS PubMed Google Scholar
- Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet. 8, 533–543 (2007).
Article CAS PubMed Google Scholar
- Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007).
Article CAS Google Scholar
- Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007).
Article CAS Google Scholar
- Fustin, J. M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013). This study shows that the m 6 A modification affects the export of several mRNAs that are related to the circadian cycle.
Article CAS PubMed Google Scholar
- Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Fernandez, I. S. et al. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500, 107–110 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Ge, J. & Yu, Y. T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38, 210–218 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. & Sorek, R. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet. 9, e1003602 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Hussain, S., Aleksic, J., Blanco, S., Dietmann, S. & Frye, M. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol. 14, 215 (2013).
Article PubMed PubMed Central Google Scholar
- Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Patton, J. R., Bykhovskaya, Y., Mengesha, E., Bertolotto, C. & Fischel-Ghodsian, N. Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J. Biol. Chem. 280, 19823–19828 (2005).
Article CAS PubMed Google Scholar
- Sahoo, T. et al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nature Genet. 40, 719–721 (2008).
Article CAS PubMed Google Scholar
- Sedgwick, B. Repairing DNA-methylation damage. Nature Rev. Mol. Cell Biol. 5, 148–157 (2004).
Article CAS Google Scholar
- Mishina, Y., Duguid, E. M. & He, C. Direct reversal of DNA alkylation damage. Chem. Rev. 106, 215–232 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Fu, Y. et al. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA. Angew. Chem. Int. Ed Engl. 49, 8885–8888 (2010).
Article CAS PubMed PubMed Central Google Scholar
- van den Born, E. et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nature Commun. 2, 172 (2011).
Article CAS Google Scholar
- Aik, W. et al. Structure of human RNA _N_6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gku085 (2014).
- Chen, W. et al. Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett. 588, 892–898 (2014).
Article CAS PubMed PubMed Central Google Scholar