Homing and cellular traffic in lymph nodes (original) (raw)
Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B159, 257–282 (1964). A classic study that provided the first clear experimental evidence for lymphocyte recirculation from blood to lymph nodes (LNs) and through the thoracic duct, back to the blood. ArticleCASPubMed Google Scholar
Marchesi, V. T. & Gowans, J. L. The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc. R. Soc. B159, 283–290 (1964). ArticleCAS Google Scholar
Girard, J. -P. & Springer, T. A. High endothelial venules (HEVs): Specialized endothelium for lymphocyte migration. Immunol. Today16, 449–457 (1995). ArticleCASPubMed Google Scholar
Gesner, B. M. & Gowans, J. L. The output of lymphocytes from the thoracic duct of unanaesthetized mice. Br. J. Exp. Path.43, 424 (1962). CAS Google Scholar
Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med.196, 1079–1090 (2002). ArticleCASPubMedPubMed Central Google Scholar
von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med.343, 1020–1034 (2000). ArticleCASPubMed Google Scholar
Kantele, A., Westerholm, M., Kantele, J. M., Makela, P. H. & Savilahti, E. Homing potentials of circulating antibody-secreting cells after administration of oral or parenteral protein or polysaccharide vaccine in humans. Vaccine17, 229–236 (1999). ArticleCASPubMed Google Scholar
Kantele, A., Zivny, J., Hakkinen, M., Elson, C. O. & Mestecky, J. Differential homing commitments of antigen-specific T cells after oral or parenteral immunization in humans. J. Immunol.162, 5173–5177 (1999). CASPubMed Google Scholar
Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med.195, 135–141 (2002). This study shows that intraperitoneal injection of a model antigen rapidly induces antigen-specific effector cells in peripheral LNs and gut-associated lymphoid tissues, which have a skin-homing and gut-homing phenotype, respectively. ArticleCASPubMedPubMed Central Google Scholar
Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol.32, 1445–1454 (2002). ArticleCASPubMed Google Scholar
Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature424, 88–93 (2003). ArticleCASPubMed Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). This study shows that memory T cells can be subdivided into CC-chemokine receptor 7 (CCR7)+L-selectin+ central memory cells and CCR7−L-selectin−effector memory cells, which show distinct responses to recall antigens. ArticleCASPubMed Google Scholar
Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med.194, 953–966 (2001). ArticleCASPubMedPubMed Central Google Scholar
Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest.108, 871–878 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mondino, A., Khoruts, A. & Jenkins, M. K. The anatomy of T-cell activation and tolerance. Proc. Natl Acad. Sci. USA93, 2245–2252 (1996). ArticleCASPubMedPubMed Central Google Scholar
Fossum, S. & Ford, W. L. The organization of cell populations within lymph nodes: their origin, life history and functional relationships. Histopathology9, 469–499 (1985). ArticleCASPubMed Google Scholar
Pabst, R. & Binns, R. M. Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol. Rev.108, 83–109 (1989). ArticleCASPubMed Google Scholar
Sainte-Marie, G. & Peng, F. S. High endothelial venules of the rat lymph node. A review and a question: is their activity antigen specific? Anat. Rec.245, 593–620 (1996). ArticleCASPubMed Google Scholar
Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev.156, 11–24 (1997). ArticleCASPubMed Google Scholar
Kelly, R. H. Functional anatomy of lymph nodes. I. The paracortical cords. Int. Arch. Allergy Appl. Immunol.48, 836–849 (1975). ArticleCASPubMed Google Scholar
von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirc.3, 287–300 (1996). ArticleCAS Google Scholar
M'Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α(1,3)-fucosyltransferase-IV. J. Exp. Med. (in the press).
Mebius, R. E., Streeter, P. R., Michie, S., Butcher, E. C. & Weissman, I. L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3− cells to colonize lymph nodes. Proc. Natl Acad. Sci. USA93, 11019–11024 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hendriks, H. R., Eestermans, I. L. & Hoefsmit, E. C. Depletion of macrophages and disappearance of postcapillary high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Cell Tissue Res.211, 375–389 (1980). ArticleCASPubMed Google Scholar
Hendriks, H. R., Duijvestijn, A. M. & Kraal, G. Rapid decrease in lymphocyte adherence to high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Eur. J. Immunol.17, 1691–1695 (1987). ArticleCASPubMed Google Scholar
Mebius, R. E., Bauer, J., Agaath, J. T. T., Brevé, J. & Kraal, G. The functional activity of high endothelial venules: a role for the subcapsular sinus macrophages in the lymph node. Immunobiology182, 277–291 (1991). ArticleCASPubMed Google Scholar
Hendriks, H. R., von Hemert, N. A. & van der Heijden, M. The effect of stimulated macrophages on high endothelial venules and germinal centres in lymph nodes of rat. Adv. Exp. Med. Biol.149, 207–212 (1982). ArticleCASPubMed Google Scholar
Mebius, R. E., Streeter, P. R., Breve, J., Duijvestijn, A. M. & Kraal, G. The influence of afferent lymphatic vessel interruption on vascular addressin expression. J. Cell Biol.115, 85–95 (1991). ArticleCASPubMed Google Scholar
Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med.183, 1461–1472 (1996). ArticleCASPubMed Google Scholar
Fan, L., Reilly, C. R., Luo, Y., Dorf, M. E. & Lo, D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J. Immunol.164, 3955–3959 (2000). ArticleCASPubMed Google Scholar
Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol.169, 424–433 (2002). ArticleCASPubMed Google Scholar
Chen, S. C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol.168, 1001–1008 (2002). ArticleCASPubMed Google Scholar
Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity14, 111–121 (2001). ArticleCASPubMed Google Scholar
De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science264, 703–707 (1994). ArticleCASPubMed Google Scholar
Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity6, 491–500 (1997). ArticleCASPubMed Google Scholar
Uccini, S. et al. Kaposi's sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi's sarcoma patients. Am. J. Pathol.150, 929–938 (1997). CASPubMedPubMed Central Google Scholar
Irjala, H. et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J. Exp. Med.194, 1033–1042 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ingulli, E., Ulman, D. R., Lucido, M. M. & Jenkins, M. K. In situ analysis reveals physical interactions between CD11b+ dendritic cells and antigen-specific CD4+ T cells after subcutaneous injection of antigen. J. Immunol.169, 2247–2252 (2002). ArticleCASPubMed Google Scholar
Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med.192, 1425–1440 (2000). ArticleCASPubMedPubMed Central Google Scholar
Anderson, A. O. & Shaw, S. T cell adhesion to endothelium: the FRC conduit system and other anatomic and molecular features which facilitate the adhesion cascade in lymph node. Semin. Immunol.5, 271–282 (1993). ArticleCASPubMed Google Scholar
Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med.191, 61–76 (2000). Intravital microscopy was used to show that CC-chemokine ligand 21 (CCL21) induces the activation of leukocyte function-associated antigen 1 (LFA1) on rolling naive T cells in LN high endothelial venules (HEVs). This paper also shows that a chemokine can be transported from the skin to the draining LNs and presented in HEVs. ArticleCASPubMedPubMed Central Google Scholar
Baekkevold, E. S. et al. The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med.193, 1105–1112 (2001). ArticleCASPubMedPubMed Central Google Scholar
Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: A remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med.194, 1361–1374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194, 769–779 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med.171, 801–817 (1990). This study shows that afferent lymph contains memory but not naive T cells, indicating that the latter can only home to LNs through HEVs, whereas (a subset of) the former migrate through peripheral tissues. ArticleCASPubMed Google Scholar
Cahill, R. N. P., Frost, H. & Trnka, Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J. Exp. Med.143, 870–888 (1976). ArticleCASPubMed Google Scholar
Ford, W. L., Simmonds, S. J. & Atkins, R. C. Early cellular events in a systemic graft-vs-host reaction. II. Autoradiographic estimates of the frequency of donor lymphocytes which respond to each Ag-B-determined antigenic complex. J. Exp. Med.141, 681–696 (1975). ArticleCASPubMed Google Scholar
Mackay, C. R., Marston, W. & Dudler, L. Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur. J. Immunol.22, 2205–2210 (1992). ArticleCASPubMed Google Scholar
Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell76, 301–314 (1994). ArticleCASPubMed Google Scholar
Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med.187, 205–216 (1998). ArticleCASPubMedPubMed Central Google Scholar
Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med.196, 65–75 (2002). This study shows that both CCR7 and CXC-chemokine receptor 4 (CXCR4) transmit integrin-activating signals in rolling B cells in LN HEVs. ArticleCASPubMedPubMed Central Google Scholar
Streeter, P. R., Rouse, B. T. N. & Butcher, E. C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol.107, 1853–1862 (1988). ArticleCASPubMed Google Scholar
Berg, E. L., Robinson, M. K., Warnock, R. A. & Butcher, E. C. The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J. Cell Biol.114, 343–349 (1991). ArticleCASPubMed Google Scholar
Clark, R. A., Fuhlbrigge, R. C. & Springer, T. A. L-selectin ligands that are O-glycoprotease-resistant and distinct from MECA-79 antigen are sufficient for tethering and rolling of lymphocytes on human high endothelial venules. J. Cell Biol.140, 721–731 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vestweber, D. & Blanks, J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev.79, 181–213 (1999). ArticleCASPubMed Google Scholar
Hamann, A. et al. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J. Immunol.140, 693–699 (1988). CASPubMed Google Scholar
Andrew, D. P. et al. Transendothelial migration and trafficking of leukocytes in LFA-1-deficient mice. Eur. J. Immunol.28, 1959–1969 (1998). ArticleCASPubMed Google Scholar
Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med.189, 1467–1478 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes Proc. Natl Acad. Sci. USA.95, 258–263 (1998). Usingin situhybridization, this study discovered that CCL21 is highly expressed by HEVs. CCL21 is also shown to be a potent chemoattractant for naive T cells. ArticleCASPubMedPubMed Central Google Scholar
Campbell, J. J. et al. Chemokines and the arrest of lymphoyctes rolling under flow conditions. Science279, 381–384 (1998). ArticleCASPubMed Google Scholar
Campbell, J. J. et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3β receptor CCR7. J. Cell Biol.141, 1053–1059 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vassileva, G. et al. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med.190, 1183–1188 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nakano, H. & Gunn, M. D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol.166, 361–369 (2001). ArticleCASPubMed Google Scholar
Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell99, 23–33 (1999). This study reports that CCR7-deficient mice have markedly disorganized secondary lymphoid tissues and are defective in lymphocyte homing. ArticleCASPubMed Google Scholar
Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med.189, 451–460 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol.2, 515–522 (2001). ArticleCAS Google Scholar
Weninger, W. et al. Naive T cell recruitment to non-lymphoid tissues: a role for endothelium-expressed CCL21 in autoimmune disease and lymphoid neogenesis. J. Immunol.170, 4638–4648 (2003). ArticleCASPubMed Google Scholar
Tang, M. L., Steeber, D. A., Zhang, X. Q. & Tedder, T. F. Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J. Immunol.160, 5113–5121 (1998). CASPubMed Google Scholar
Stein, J. V. et al. L-selectin-mediated leukocyte adhesion in vivo: microvillous distribution determines tethering efficiency, but not rolling velocity. J. Exp. Med.189, 37–50 (1999). ArticleCASPubMedPubMed Central Google Scholar
Robert, C. et al. Gene therapy to target dendritic cells from blood to lymph nodes. Gene Therapy10, 1479–1486 (2003). ArticleCASPubMed Google Scholar
Streeter, P. R., Lakey-Berg, E., Rouse, B. T. N., Bargatze, R. F. & Butcher, E. C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature331, 41–46 (1988). ArticleCASPubMed Google Scholar
Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell74, 185–195 (1993). ArticleCASPubMed Google Scholar
Bargatze, R. F., Jutila, M. A. & Butcher, E. C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: The multistep model confirmed and refined. Immunity3, 99–108 (1995). ArticleCASPubMed Google Scholar
Arbones, M. L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity1, 247–260 (1994). The first detailed phenotypic characterization of L-selectin-deficient mice. ArticleCASPubMed Google Scholar
Wagner, N. et al. Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. Nature382, 366–370 (1996). ArticleCASPubMed Google Scholar
Kunkel, E. J. et al. The roles of L-selectin, β7 integrins, and P-selectin in leukocyte rolling and adhesion in high endothelial venules of Peyer's patches. J. Immunol.161, 2449–2456 (1998). CASPubMed Google Scholar
Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A. & von Andrian, U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science273, 252–255 (1996). ArticleCASPubMed Google Scholar
Salmi, M. & Jalkanen, S. VAP-1: an adhesin and an enzyme. Trends Immunol.22, 211–216 (2001). ArticleCASPubMed Google Scholar
Stockton, B. M., Cheng, G., Manjunath, N., Ardman, B. & von Andrian, U. H. Negative regulation of T cell homing by CD43. Immunity8, 373–381 (1998). ArticleCASPubMed Google Scholar
Jalkanen, S. T., Bargatze, R. F., Herron, L. R. & Butcher, E. C. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur. J. Immunol.16, 1195–1202 (1986). ArticleCASPubMed Google Scholar
Stoop, R., Gal, I., Glant, T. T., McNeish, J. D. & Mikecz, K. Trafficking of CD44-deficient murine lymphocytes under normal and inflammatory conditions. Eur. J. Immunol.32, 2532–2542 (2002). ArticleCASPubMed Google Scholar
Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell91, 1001–1011 (1997). This study shows that extravascular chemokines can be transported in caveoli to the luminal surface of endothelial cells where they are presented to passing leukocytes. Article Google Scholar
Gu, L., Tseng, S. C. & Rollins, B. J. Monocyte chemoattractant protein-1. Chem. Immunol.72, 7–29 (1999). ArticleCASPubMed Google Scholar
Janatpour, M. J., Hudak, S., Sathe, M., Sedgwick, J. D. & McEvoy, L. M. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med.194, 1375–1384 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nibbs, R. J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol.158, 867–877 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fra, A. M. et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol.170, 2279–2282 (2003). ArticleCASPubMed Google Scholar
Girard, J. P. et al. Heterogeneity of endothelial cells: the specialized phenotype of human high endothelial venules characterized by suppression subtractive hybridization. Am. J. Pathol.155, 2043–2055 (1999). ArticleCASPubMedPubMed Central Google Scholar
De Bruyn, P. P. H. & Cho, Y. in Reaction Patterns of the Lymph Node (eds Grundman, E. & Vollmer, T.) 85–103 (Springer–Verlag, Berlin, 1990). Book Google Scholar
Anderson, A. O. & Anderson, N. D. Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology31, 731–748 (1976). CASPubMedPubMed Central Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). ArticleCASPubMed Google Scholar
Sallusto, F. & Lanzavecchia, A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J. Exp. Med.189, 611–614 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17, 211–220 (2002). ArticleCASPubMedPubMed Central Google Scholar
Itano, A. A. et al. Distinct dendritic cell populations sequentially present a subcutaneous antigen to CD4+ T cells and stimulate different aspects of cell-mediated immunity. Immunity19, 47–57 (2003). ArticleCASPubMed Google Scholar
Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol.167, 741–748 (2001). ArticleCASPubMed Google Scholar
Nakano, H., Yanagita, M. & Gunn, M. D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med.194, 1171–1178 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stoitzner, P. et al. Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J. Invest. Dermatol.120, 266–274 (2003). ArticleCASPubMed Google Scholar
Merad, M., Fong, L., Bogenberger, J. & Engleman, E. G. Differentiation of myeloid dendritic cells into CD8α-positive dendritic cells in vivo. Blood96, 1865–1872 (2000). ArticleCASPubMed Google Scholar
Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med.5, 919–923 (1999). ArticleCASPubMed Google Scholar
Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol.3, 1135–1141 (2002). ArticleCAS Google Scholar
Robert, C. et al. Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance. J. Exp. Med.189, 627–636 (1999). ArticleCASPubMedPubMed Central Google Scholar
Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11, 753–761 (1999). ArticleCASPubMed Google Scholar
Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol.28, 2760–2769 (1998). ArticleCASPubMed Google Scholar
Adema, G. J. et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature387, 713–717 (1997). ArticleCASPubMed Google Scholar
Hieshima, K. et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1α/LD78α and chemotactic for T lymphocytes, but not for monocytes. J. Immunol.159, 1140–1149 (1997). CASPubMed Google Scholar
Godiska, R. et al. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells J. Exp. Med.185, 1595–1604 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ngo, V. N., Tang, H. L. & Cyster, J. G. Epstein–Barr-virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J. Exp. Med.188, 181–191 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kabashima, K. et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nature Immunol.4, 694–701 (2003). ArticleCAS Google Scholar
Robbiani, D. F. et al. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell103, 757–768 (2000). ArticleCASPubMed Google Scholar
Xu, H. et al. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur. J. Immunol.31, 3085–3093 (2001). ArticleCASPubMedPubMed Central Google Scholar
Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA99, 351–358 (2002). ArticleCASPubMedPubMed Central Google Scholar
Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science281, 96–99 (1998). This study uses immunohistochemistry to characterize the kinetics and interstitial location of interactions between antigen-specific B and T cells in lymph nodes. ArticleCASPubMed Google Scholar
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCASPubMed Google Scholar
Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol.2, 872–880 (2002). ArticleCAS Google Scholar
Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). This study uses time-lapse two-photon microscopy to study the dynamics of T-cell migration in excised LNs. ArticleCASPubMed Google Scholar
Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science296, 1873–1876 (2002). ArticlePubMed Google Scholar
Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol.4, 579–585 (2003). ArticleCAS Google Scholar
von Andrian, U. H. Immunology. T cell activation in six dimensions. Science296, 1815–1817 (2002). ArticleCASPubMed Google Scholar
Torres Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R. K. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl Acad. Sci. USA91, 2081–2085 (1994). ArticleCASPubMedPubMed Central Google Scholar
Bogdan, C., Rollinghoff, M. & Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol.12, 64–76 (2000). ArticleCASPubMed Google Scholar
Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev.82, 47–95 (2002). ArticleCASPubMed Google Scholar
Madden, K. S. & Felten, D. L. Experimental basis for neural-immune interactions. Physiol. Rev.75, 77–106 (1995). ArticleCASPubMed Google Scholar
Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA100, 2604–2609 (2003). This is the first two-photon microscopy study on T-cell migration in LNsin vivo. The data indicate that T cells migrate rapidly and without apparent directionality in the T-cell area immediately after having undergone diapedesis across the HEVs. ArticleCASPubMedPubMed Central Google Scholar
Legler, D. F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med.187, 655–660 (1998). ArticleCASPubMedPubMed Central Google Scholar
Forster, R. et al. A putative chemokine receptor, BLRI, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell87, 1037–1047 (1996). ArticleCASPubMed Google Scholar
Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med.192, 1553–1562 (2000). ArticleCASPubMedPubMed Central Google Scholar
Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med.192, 1545–1552 (2000). ArticleCASPubMedPubMed Central Google Scholar
Irjala, H. et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur. J. Immunol.33, 815–824 (2003). ArticleCASPubMed Google Scholar
Brinkmann, V. & Lynch, K. FTY720: targeting G-protein-coupled receptors for sphingosine-1-phosphate in transplantation and autoimmunity. Curr. Opin. Immunol.14, 569–575 (2002). ArticleCASPubMed Google Scholar
Enosawa, S., Suzuki, S., Kakefuda, T., Li, X. K. & Amemiya, H. Induction of selective cell death targeting on mature T-lymphocytes in rats by a novel immunosuppressant, FTY720. Immunopharmacology34, 171–179 (1996). ArticleCASPubMed Google Scholar
Pinschewer, D. D. et al. FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J. Immunol.164, 5761–5770 (2000). ArticleCASPubMed Google Scholar
Chiba, K. et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol.160, 5037–5044 (1998). CASPubMed Google Scholar
Henning, G. et al. CC chemokine receptor 7-dependent and -independent pathways for lymphocyte homing: modulation by FTY720. J. Exp. Med.194, 1875–1881 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yagi, H. et al. Immunosuppressant FTY720 inhibits thymocyte emigration. Eur. J. Immunol.30, 1435–1444 (2000). ArticleCASPubMed Google Scholar
Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science296, 346–349 (2002). This study shows that the immunosuppressive drug FTY720 is rapidly phosphorylatedin vivoand then binds to sphingosine-1-phosphate (S1P) receptors. S1P-receptor agonists cause lymphopaenia and block lymphocyte exit from the LN parenchyma to the medullary sinuses. ArticleCASPubMed Google Scholar
Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem.277, 21453–21457 (2002). ArticleCASPubMed Google Scholar
Graeler, M., Shankar, G. & Goetzl, E. J. Cutting edge: suppression of T cell chemotaxis by sphingosine 1-phosphate. J. Immunol.169, 4084–4087 (2002). ArticleCASPubMed Google Scholar
Honig, S. M. et al. FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J. Clin. Invest.111, 627–637 (2003). ArticleCASPubMedPubMed Central Google Scholar
von Andrian, U. H., Hasslen, S. R., Nelson, R. D., Erlandsen, S. L. & Butcher, E. C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell82, 989–999 (1995). ArticleCASPubMed Google Scholar
Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two–photon excited fluorescence. Proc. Natl Acad. Sci. USA99, 11014–11019 (2002). ArticleCASPubMedPubMed Central Google Scholar