CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection (original) (raw)
Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol.165, 6833–6839 (2000). ArticleCAS Google Scholar
Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol.2, 415–422 (2001). ArticleCAS Google Scholar
van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol.2, 423–429 (2001). ArticleCAS Google Scholar
van Stipdonk, M.J. et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol.4, 361–365 (2003). ArticleCAS Google Scholar
Badovinac, V.P., Porter, B.B. & Harty, J.T. Programmed contraction of CD8+ T cells after infection. Nat. Immunol.3, 619–626 (2002). ArticleCAS Google Scholar
Bevan, M.J. & Fink, P.J. The CD8 response on autopilot. Nat. Immunol.2, 381–382 (2001). ArticleCAS Google Scholar
Masopust, D., Kaech, S.M., Wherry, E.J. & Ahmed, R. The role of programming in memory T-cell development. Curr. Opin. Immunol.16, 217–225 (2004). ArticleCAS Google Scholar
Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300, 339–342 (2003). ArticleCAS Google Scholar
Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science300, 337–339 (2003). ArticleCAS Google Scholar
Belz, G.T., Wodarz, D., Diaz, G., Nowak, M.A. & Doherty, P.C. Compromised influenza virus-specific CD8+-T-cell memory in CD4+-T-cell-deficient mice. J. Virol.76, 12388–12393 (2002). ArticleCAS Google Scholar
Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421, 852–856 (2003). ArticleCAS Google Scholar
Tanchot, C. & Rocha, B. CD8 and B cell memory: same strategy, same signals. Nat. Immunol.4, 431–432 (2003). ArticleCAS Google Scholar
Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol.22, 765–787 (2004). ArticleCAS Google Scholar
Sprent, J. & Surh, C.D. T cell memory. Annu. Rev. Immunol.20, 551–579 (2002). ArticleCAS Google Scholar
Schluns, K.S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol.3, 269–279 (2003). ArticleCAS Google Scholar
Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol.4, 1191–1198 (2003). ArticleCAS Google Scholar
Huster, K.M. et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl. Acad. Sci. USA101, 5610–5615 (2004). ArticleCAS Google Scholar
Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity20, 551–562 (2004). ArticleCAS Google Scholar
Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science297, 2060–2063 (2002). ArticleCAS Google Scholar
Khanolkar, A., Fuller, M.J. & Zajac, A.J. CD4 T cell-dependent CD8 T cell maturation. J. Immunol.172, 2834–2844 (2004). ArticleCAS Google Scholar
Bennett, S.R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). ArticleCAS Google Scholar
Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998). ArticleCAS Google Scholar
Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R. & Melief, C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998). ArticleCAS Google Scholar
Wang, J.C. & Livingstone, A.M. Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J. Immunol.171, 6339–6343 (2003). ArticleCAS Google Scholar
Sun, J.C. & Bevan, M.J. Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J. Immunol.172, 3385–3389 (2004). ArticleCAS Google Scholar
Le Bon, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4, 1009–1015 (2003). ArticleCAS Google Scholar
Lee, B.O., Hartson, L. & Randall, T.D. CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. J. Exp. Med.198, 1759–1764 (2003). ArticleCAS Google Scholar
Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol.2, 547–556 (2002). ArticleCAS Google Scholar
Prlic, M., Lefrancois, L. & Jameson, S.C. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med.195, F49–F52 (2002). ArticleCAS Google Scholar
Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol.1, 426–432 (2000). ArticleCAS Google Scholar
Goldrath, A.W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med.195, 1515–1522 (2002). ArticleCAS Google Scholar
Tan, J.T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med.195, 1523–1532 (2002). ArticleCAS Google Scholar
Kieper, W.C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med.195, 1533–1539 (2002). ArticleCAS Google Scholar
Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med.195, 1541–1548 (2002). ArticleCAS Google Scholar
Schluns, K.S., Williams, K., Ma, A., Zheng, X.X. & Lefrancois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol.168, 4827–4831 (2002). ArticleCAS Google Scholar
Judge, A.D., Zhang, X., Fujii, H., Surh, C.D. & Sprent, J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med.196, 935–946 (2002). ArticleCAS Google Scholar
Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). ArticleCAS Google Scholar
Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCAS Google Scholar
Schluns, K.S., Klonowski, K.D. & Lefrancois, L. Transregulation of memory CD8 T-cell proliferation by IL-15Rα+ bone marrow-derived cells. Blood103, 988–994 (2004). ArticleCAS Google Scholar
Burkett, P.R. et al. IL-15Rα expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl. Acad. Sci. USA100, 4724–4729 (2003). ArticleCAS Google Scholar
Schluns, K.S. et al. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptorα expression. Proc. Natl. Acad. Sci. USA101, 5616–5621 (2004). ArticleCAS Google Scholar
Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity17, 53–547 (2002). Article Google Scholar
Shen, H. et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA92, 3987–3991 (1995). ArticleCAS Google Scholar
Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274, 94–96 (1996). ArticleCAS Google Scholar
Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). ArticleCAS Google Scholar