Intracellular signalling controlling integrin activation in lymphocytes (original) (raw)
Hemler, M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol.8, 365–400 (1990). ArticleCASPubMed Google Scholar
Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell69, 11–25 (1992). ArticleCASPubMed Google Scholar
Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol.57, 827–872 (1995). ArticleCASPubMed Google Scholar
Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol.72, 209–253 (1999). ArticleCASPubMed Google Scholar
Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature341, 619–624 (1989). ArticleCASPubMed Google Scholar
Carman, C. V. & Springer, T. A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol.15, 547–556 (2003). ArticleCASPubMed Google Scholar
Bazzoni, G. & Hemler, M. E. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci.23, 30–34 (1998). ArticleCASPubMed Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221–226 (1999). ArticleCASPubMed Google Scholar
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kufper, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). ArticleCASPubMed Google Scholar
Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity7, 549–557 (1997). ArticleCASPubMed Google Scholar
Kucik, D. F., Dustin, M. L., Miller, J. M. & Brown, E. J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest.97, 2139–2144 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yauch, R. L. et al. Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independence of ligand binding. J. Exp. Med.186, 1347–1355 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. R., Hyduk, S. J. & Cybulsky, M. I. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med.193, 1149–1158 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lollo, B. A., Chan, K. W., Hanson, E. M., Moy, V. T. & Brian, A. A. Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J. Biol. Chem.268, 21693–21700 (1993). CASPubMed Google Scholar
Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity13, 759–769 (2000). ArticleCASPubMed Google Scholar
Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunol. Rev.186, 141–163 (2002). ArticleCASPubMed Google Scholar
Lee, J. O., Bankston, L. A., Arnaout, M. A. & Liddington, R. C. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure3, 1333–1340 (1995). ArticleCASPubMed Google Scholar
Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell112, 99–111 (2003). ArticleCASPubMedPubMed Central Google Scholar
Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1 . Cell101, 47–56 (2000). ArticleCASPubMed Google Scholar
Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science296, 151–155 (2002). ArticleCASPubMed Google Scholar
Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell110, 599–611 (2002). This is the landmark study of the global structural changes in integrins that are associated with ligand binding and occur after cellular activation. ArticleCASPubMed Google Scholar
Adair, B. D. et al. Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J. Cell Biol.168, 1109–1118 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dustin, M. L., Bivona, T. G. & Philips, M. R. Membranes as messengers in T cell adhesion signaling. Nature Immunol.5, 363–372 (2004). ArticleCAS Google Scholar
Lu, C., Ferzly, M., Takagi, J. & Springer, T. A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. J. Immunol.166, 5629–5637 (2001). ArticleCASPubMed Google Scholar
Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell110, 587–597 (2002). ArticleCASPubMed Google Scholar
Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science301, 1720–1725 (2003). Using FRET technology, this study showed that the cytoplasmic regions of LFA1 separate after ligand binding and cellular activation. ArticleCASPubMed Google Scholar
Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature320, 531–533 (1986). ArticleCASPubMed Google Scholar
Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin–membrane interaction. Cell Motil.3, 405–417 (1983). ArticleCASPubMed Google Scholar
Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA98, 9642–9647 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature347, 685–689 (1990). ArticleCASPubMed Google Scholar
Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell11, 49–58 (2003). ArticleCASPubMed Google Scholar
Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science302, 103–106 (2003). ArticleCASPubMed Google Scholar
Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell101, 259–270 (2000). ArticleCASPubMed Google Scholar
Calderwood, D. A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem.274, 28071–28074 (1999). ArticleCASPubMed Google Scholar
Yan, B., Calderwood, D. A., Yaspan, B. & Ginsberg, M. H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem.276, 28164–28170 (2001). ArticleCASPubMed Google Scholar
Stewart, M. P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol.140, 699–707 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem.273, 33588–33594 (1998). ArticleCASPubMed Google Scholar
Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med.191, 61–76 (2000). ArticleCASPubMedPubMed Central Google Scholar
Warnock, R. A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J. Exp. Med.191, 77–88 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ebisuno, Y. et al. The B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J. Immunol.171, 1642–1646 (2003). ArticleCASPubMed Google Scholar
Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med.192, 495–506 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. R., Hyduk, S. J. & Cybulsky, M. I. Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and chemoattractants. J. Immunol. Methods273, 43–52 (2003). ArticleCASPubMed Google Scholar
Salas, A., Shimaoka, M., Chen, S., Carman, C. V. & Springer, T. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin lymphocyte function-associated antigen-1. J. Biol. Chem.277, 50255–50262 (2002). ArticleCASPubMed Google Scholar
Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N. & Miyasaka, M. Rolling of TH1 cells via P-selectin glycoprotein ligand-1 stimulates LFA-1-mediated cell binding to ICAM-1. J. Immunol.174, 1424–1432 (2005). ArticleCASPubMed Google Scholar
Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nature Immunol.6, 497–506 (2005). This paper was the first to show that extension of LFA1 triggered by immobilized chemokines is the crucial step in mediating lymphocyte arrest under shear-flow conditions. ArticleCAS Google Scholar
Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). ArticleCASPubMed Google Scholar
Moser, B., Wolf, M., Walz, A. & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol.25, 75–84 (2004). ArticleCASPubMed Google Scholar
Lo, C. G., Lu, T. T. & Cyster, J. G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med.197, 353–361 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol.4, 579–585 (2003). ArticleCAS Google Scholar
Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). ArticleCASPubMed Google Scholar
Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med.200, 847–856 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ward, S. G. Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol.25, 67–74 (2004). ArticleCASPubMed Google Scholar
Shimizu, Y., Mobley, J. L., Finkelstein, L. D. & Chan, A. S. A role for phosphatidylinositol 3-kinase in the regulation of β1 integrin activity by the CD2 antigen. J. Cell Biol.131, 1867–1880 (1995). ArticleCASPubMed Google Scholar
Zell, T., Hunt, S. W., Mobley, J. L., Finkelstein, L. D. & Shimizu, Y. CD28-mediated up-regulation of β1-integrin adhesion involves phosphatidylinositol 3-kinase. J. Immunol.156, 883–886 (1996). CASPubMed Google Scholar
Kinashi, T., Escobedo, J. A., Williams, L. T., Takatsu, K. & Springer, T. A. Receptor tyrosine kinase stimulates cell-matrix adhesion by phosphatidylinositol 3 kinase and phospholipase C-γ1 pathways. Blood86, 2086–2090 (1995). CASPubMed Google Scholar
Kinashi, T., Asaoka, T., Setoguchi, R. & Takatsu, K. Affinity modulation of very late antigen-5 through phosphatidylinositol 3-kinase in mast cells. J. Immunol.162, 2850–2857 (1999). CASPubMed Google Scholar
Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-kinase. Mol. Cell. Biol.20, 1956–1969 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). ArticleCASPubMed Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science287, 1049–1053 (2000). ArticleCASPubMed Google Scholar
Reif, K. et al. Differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol.173, 2236–2240 (2004). ArticleCASPubMed Google Scholar
Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nature Rev. Immunol.3, 317–330 (2003). ArticleCAS Google Scholar
Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase γ during T and B lymphocyte homing. Immunity21, 429–441 (2004). This study showed that a deficiency in DOCK2 impairs the LFA1-dependent tethering and firm adhesion to endothelial venules of B cells but not T cells. ArticleCASPubMed Google Scholar
Kolanus, W. et al. αLβ2 Integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell86, 233–242 (1996). ArticleCASPubMed Google Scholar
Meacci, E., Tsai, S. C., Adamik, R., Moss, J. & Vaughan, M. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl Acad. Sci. USA94, 1745–1748 (1997). ArticleCASPubMedPubMed Central Google Scholar
Weber, K. S. et al. Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines. Curr. Biol.11, 1969–1974 (2001). ArticleCASPubMed Google Scholar
Perez, O. D. et al. Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nature Immunol.4, 1083–1092 (2003). ArticleCAS Google Scholar
Laudanna, C., Campbell, J. J. & Butcher, E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science271, 981–983 (1996). ArticleCASPubMed Google Scholar
Giagulli, C. et al. RhoA and ζ PKC control distinct modalities of LFA-1 activation by chemokines: critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity20, 25–35 (2004). ArticleCASPubMed Google Scholar
Bos, J. L., de Rooij, J. & Reedquist, K. A. Rap1 signaling: adhering to new models. Nature Rev. Mol. Cell Biol.2, 369–377 (2001). ArticleCAS Google Scholar
Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D. A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nature Immunol.3, 251–258 (2002). ArticleCAS Google Scholar
Bertoni, A. et al. Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem.277, 25715–25721 (2002). ArticleCASPubMed Google Scholar
Tohyama, Y. et al. The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration. Mol. Biol. Cell14, 2570–2582 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hibbs, M. L., Jakes, S., Stacker, S. A., Wallace, R. W. & Springer, T. A. The cytoplasmic domain of the integrin lymphocyte-function-associated antigen 1 β subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. J. Exp. Med.174, 1227–1238 (1991). ArticleCASPubMed Google Scholar
Hibbs, M. L., Xu, H., Stacker, S. A. & Springer, T. A. Regulation of adhesion to ICAM-1 by the cytoplasmic domain of LFA-1 integrin β subunit. Science251, 1611–1613 (1991). ArticleCASPubMed Google Scholar
Weber, C., Lu, C. -H., Casanovas, J. M. & Springer, T. A. Role of αLβ2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J. Immunol.159, 3968–3975 (1997). CASPubMed Google Scholar
Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol.161, 417–427 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood103, 1033–1036 (2004). ArticleCASPubMed Google Scholar
Alon, R. & Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol.24, 561–566 (2003). ArticleCASPubMed Google Scholar
Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol.4, 741–748 (2003). This study identified RAPL as a RAP1 effector in lymphocytes that mediates LFA1- and VLA4-dependent adhesion, and it showed that RAP1–RAPL complexes coordinate affinity and valency regulation of LFA1. ArticleCAS Google Scholar
Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene21, 2713–2720 (2002). ArticleCASPubMed Google Scholar
Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol. Lett.93, 1–5 (2004). ArticleCASPubMed Google Scholar
Katagiri, K. et al. Crucial roles of Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nature Immunol.5, 1045–1051 (2004). Using gene targeting, this study showed that RAPL has an important role in the LFA1- and VLA4-dependent adhesion of lymphocytes stimulated with chemokines. ArticleCAS Google Scholar
Inagaki, T. et al. The retinoic acid-responsive proline-rich protein is identified in promyeloleukemic HL-60 cells. J. Biol. Chem.278, 51685–51692 (2003). ArticleCASPubMed Google Scholar
Jenzora, A., Behrendt, B., Small, J. V., Wehland, J. & Stradal, T. E. PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Lett.579, 455–463 (2005). ArticleCASPubMed Google Scholar
Legg, J. A. & Machesky, L. M. MRL proteins: leading Ena/VASP to Ras GTPases. Nature Cell Biol.6, 1015–1017 (2004). ArticleCASPubMed Google Scholar
Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature412, 826–831 (2001). Using gene targeting, this study showed that DOCK2 is a regulator of RAC and is crucial for assembly of the actin cytoskeleton in, and chemotactic migration of, lymphocytes stimulated with chemokines. ArticleCASPubMed Google Scholar
Sanui, T. et al. DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-θ and LFA-1, in T cells. Immunity19, 119–129 (2003). ArticleCASPubMed Google Scholar
Cherry, L. K., Li, X., Schwab, P., Lim, B. & Klickstein, L. B. RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nature Immunol.5, 961–967 (2004). This was the first report that the weakly adhesive state of LFA1 is actively controlled by RHO-H. ArticleCAS Google Scholar
Li, X. et al. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol. Cell. Biol.22, 1158–1171 (2002). ArticleCASPubMedPubMed Central Google Scholar
Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The semaphorin 4D receptor plexin-B1 is a GTPase activating protein for R-Ras. Science305, 862–865 (2004). ArticleCASPubMed Google Scholar
Zang, Z., Vuori, K., Wang, H. -G., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell85, 61–69 (1996). Article Google Scholar
Kinashi, T. et al. Distinct mechanisms of α5β1 integrin activation by Ha-Ras and R-Ras. J. Biol. Chem.275, 22590–22596 (2000). ArticleCASPubMed Google Scholar
Lucas, J. A., Miller, A. T., Atherly, L. O. & Berg, L. J. The role of Tec family kinases in T cell development and function. Immunol. Rev.191, 119–138 (2003). ArticleCASPubMed Google Scholar
Woods, M. L. et al. A novel function for the Tec family tyrosine kinase Itk in activation of β1 integrins by the T-cell receptor. EMBO J.20, 1232–1244 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P. L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol.14, 917–922 (2004). ArticleCASPubMed Google Scholar
Labno, C. M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol.13, 1619–1624 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fischer, A. M., Mercer, J. C., Iyer, A., Ragin, M. J. & August, A. Regulation of CXC chemokine receptor 4-mediated migration by the Tec family tyrosine kinase ITK. J. Biol. Chem.279, 29816–29820 (2004). ArticleCASPubMed Google Scholar
Kim, C. H. et al. Abnormal chemokine-induced responses of immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J. Exp. Med.190, 681–690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity16, 331–343 (2002). ArticleCASPubMed Google Scholar
Tybulewicz, V. L., Ardouin, L., Prisco, A. & Reynolds, L. F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev.192, 42–52 (2003). ArticleCASPubMed Google Scholar
Peterson, E. J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science293, 2263–2265 (2001). ArticleCASPubMed Google Scholar
Griffiths, E. K. et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science293, 2260–2263 (2001). ArticleCASPubMed Google Scholar
Peterson, E. J. The TCR ADAPts to integrin-mediated cell adhesion. Immunol. Rev.192, 113–121 (2003). References 106 and 107 identified ADAP as a crucial mediator of activation of T-cell integrins after TCR ligation. ArticleCASPubMed Google Scholar
Wang, H. et al. ADAP–SLP-76 binding differentially regulates supramolecular activation cluster (SMAC) formation relative to T cell–APC conjugation. J. Exp. Med.200, 1063–1074 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. SKAP-55 regulates integrin adhesion and formation of T cell–APC conjugates. Nature Immunol.4, 366–374 (2003). ArticleCAS Google Scholar
Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science278, 124–128 (1997). ArticleCASPubMed Google Scholar
Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell. Biol.22, 1001–1015 (2002). ArticleCASPubMedPubMed Central Google Scholar
Katagiri, K., Shimonaka, M. & Kinashi, T. Rap1-mediated LFA-1 activation by the T cell antigen receptor is dependent on PLC-γ1. J. Biol. Chem.279, 11875–11881 (2004). ArticleCASPubMed Google Scholar
McLeod, S. J. & Gold, M. R. Activation and function of the Rap1 GTPase in B lymphocytes. Int. Rev. Immunol.20, 763–789 (2001). ArticleCASPubMed Google Scholar
Amsen, D., Kruisbeek, A., Bos, J. L. & Reedquist, K. Activation of the Ras-related GTPase Rap1 by thymocyte TCR engagement and during selection. Eur. J. Immunol.30, 2832–2841 (2000). ArticleCASPubMed Google Scholar
Zhang, W. et al. Negative regulation of T cell antigen receptor-mediated Crk-L–C3G signaling and cell adhesion by Cbl-b. J. Biol. Chem.278, 23978–23983 (2003). ArticleCASPubMed Google Scholar
Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol.20, 371–394 (2002). ArticleCASPubMed Google Scholar
Kellermann, S. A., Dell, C. L., Hunt, S. W. & Shimizu, Y. Genetic analysis of integrin activation in T lymphocytes. Immunol. Rev.186, 172–188 (2002). ArticleCASPubMed Google Scholar
Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med.195, 1103–1114 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fabbri, M. et al. A tyrosine-based sorting signal in the β2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand-supported migration. EMBO J.18, 4915–4925 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bivona, T. G. et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol.164, 461–470 (2004). ArticleCASPubMedPubMed Central Google Scholar
Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol.154, 147–160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci.116, 3123–3133 (2003). ArticleCASPubMed Google Scholar
Lawson, M. A. & Maxfield, R. R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature377, 75–79 (1995). ArticleCASPubMed Google Scholar
Martel, V. et al. Talin controls the exit of the integrin α5β1 from an early compartment of the secretory pathway. J. Cell Sci.113, 1951–1961 (2000). CASPubMed Google Scholar
Arthur, W. T., Quilliam, L. A. & Cooper, J. A. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J. Cell Biol.167, 111–122 (2004). ArticleCASPubMedPubMed Central Google Scholar
Caloca, M. J., Zugaza, J. L., Vicente-Manzanares, M., Sanchez-Madrid, F. & Bustelo, X. R. F-actin-dependent translocation of the Rap1 GDP/GTP exchange factor RasGRP2. J. Biol. Chem.279, 20435–20446 (2004). ArticleCASPubMed Google Scholar
Song, M. S. et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC–Cdc20 complex. Nature Cell Biol.6, 129–137 (2004). ArticleCASPubMed Google Scholar
Fujita, H. et al. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J. Biol. Chem.280, 5022–5031 (2005). ArticleCASPubMed Google Scholar
Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). ArticleCASPubMed Google Scholar