Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). ArticleCASPubMed Google Scholar
Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34−low/negative hematopoietic stem cell. Science273, 242–245 (1996). ArticleCASPubMed Google Scholar
Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science287, 1427–1430 (2000). ArticleCASPubMed Google Scholar
Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell100, 157–168 (2000). ArticleCASPubMed Google Scholar
Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003). ArticleCASPubMed Google Scholar
Till, J. E. & McCulloch, C. E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res.14, 213–222 (1961). ArticleCASPubMed Google Scholar
Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science297, 2256–2259 (2002). ArticleCASPubMed Google Scholar
Matsuzaki, Y., Kinjo, K., Mulligan, R. C. & Okano, H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity20, 87–93 (2004). ArticleCASPubMed Google Scholar
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). This study shows that CD150, one of the signalling lymphocytic activation molecules (SLAMs) is expressed by LTR HSCs. CD150+ HSCs were localized near sinusoids in normal bone marrow, indicating that in addition to the endosteal niche a second vascular niche might exist. ArticleCASPubMed Google Scholar
Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells4, 7–25 (1978). This paper proposes that HSCs are associated with other cell types, and that these allow self-renewal but prevent cell maturation. Schofield termed this microenvironment the 'stem-cell niche' CASPubMed Google Scholar
McCulloch, E. A., Siminovitch, L., Till, J. E., Russell, E. S. & Bernstein, S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood26, 399–410 (1965). This paper (together with references 13 and 14) shows that normal bone marrow fails to engraft inSl/Sldmice. This is probably the first study demonstrating that the microenvironment is essential for bone-marrow HSC function and/or maintenance. CASPubMed Google Scholar
Barker, J. E. Sl/Sld hematopoietic progenitors are deficient in situ. Exp. Hematol.22, 174–177 (1994). CASPubMed Google Scholar
Barker, J. E. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp. Hematol.25, 542–547 (1997). CASPubMed Google Scholar
Nilsson, S. K. & Simmons, P. J. Transplantable stem cells: home to specific niches. Curr. Opin. Hematol.11, 102–106 (2004). ArticlePubMed Google Scholar
Ohlstein, B., Kai, T., Decotto, E. & Spradling, A. The stem cell niche: theme and variations. Curr. Opin. Cell Biol.16, 693–699 (2004). ArticleCASPubMed Google Scholar
Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature414, 98–104 (2001). ArticleCASPubMed Google Scholar
Wu, A. M., Siminovitch, L., Till, J. E. & McCulloch, E. A. Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. Proc. Natl Acad. Sci. USA59, 1209–1215 (1968). ArticleCASPubMedPubMed Central Google Scholar
Domen, J. & Weissman, I. L. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol. Med. Today5, 201–208 (1999). ArticleCASPubMed Google Scholar
Yang, L. et al. Identification of Lin−Sca1+kit+CD34+Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood105, 2717–2723 (2005). ArticleCASPubMed Google Scholar
Adolfsson, J. et al. Identification of Flt3+lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCASPubMed Google Scholar
Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA98, 14541–14546 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jordan, C. T. & Lemischka, I. R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev.4, 220–232 (1990). ArticleCASPubMed Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). ArticleCASPubMed Google Scholar
Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood101, 383–389 (2003). ArticleCASPubMed Google Scholar
Roegiers, F. & Jan, Y. N. Asymmetric cell division. Curr. Opin. Cell Biol.16, 195–205 (2004). ArticleCASPubMed Google Scholar
Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol.14, R674–R685 (2004). ArticleCASPubMed Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). This paper shows that some basal cells of the skin epidermis divide in an asymmetric manner (divisional asymmetry), and that this correlates with the unequal distribution of determinants including PAR3, LGN and mINSC in the two daughter cells. ArticlePubMedPubMed Central Google Scholar
Suda, J., Suda, T. & Ogawa, M. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood64, 393–399 (1984). CASPubMed Google Scholar
Takano, H., Ema, H., Sudo, K. & Nakauchi, H. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J. Exp. Med.199, 295–302 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ho, A. D. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp. Hematol.33, 1–8 (2005). ArticleCASPubMed Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science290, 328–330 (2000). ArticleCASPubMed Google Scholar
Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature407, 750–754 (2000). ArticleCASPubMed Google Scholar
Fleming, W. H. et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J. Cell Biol.122, 897–902 (1993). ArticleCASPubMed Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). ArticleCASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). In this paper, transgenic expression of H2B–EGFP is used to show that slow-cycling skin epidermal stem cells are primarily located in the hair follicle bulge. This technique, which identifies and allows purification of viable LRCs, should be adaptable for analysis of other adult stem cells and their associated niches. ArticleCASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). N-cadherin was proposed as a critical molecule that anchors HSCs to osteoblasts through homotypic interactions. This study (together with reference 67), also shows that osteoblastic cells are a critical component of the endosteal bone-marrow niche. ArticleCASPubMed Google Scholar
Lerner, C. & Harrison, D. E. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp. Hematol.18, 114–118 (1990). CASPubMed Google Scholar
Spangrude, G. J. & Johnson, G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl Acad. Sci. USA87, 7433–7437 (1990). ArticleCASPubMedPubMed Central Google Scholar
Uchida, N. et al. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood89, 465–472 (1997). CASPubMed Google Scholar
Suda, T., Arai, F. & Hirao, A. Hematopoietic stem cells and their niche. Trends Immunol.26, 426–433 (2005). ArticleCASPubMed Google Scholar
Potten, C. S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development110, 1001–1020 (1990). CASPubMed Google Scholar
Arai, F. et al. Tie2/angiopoietin-1 signalling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). This paper shows that the ANG1 produced by niche osteoblasts activates TIE2, which maintains HSC quiescence and increases N-cadherin expression, and therefore increases adhesion to the endosteal niche. ArticleCASPubMed Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). ArticleCASPubMed Google Scholar
Van Zant, G. Studies of hematopoietic stem cells spared by 5-fluorouracil. J. Exp. Med.159, 679–690 (1984). ArticleCASPubMed Google Scholar
Randall, T. D. & Weissman, I. L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood89, 3596–3606 (1997). CASPubMed Google Scholar
Uchida, N. et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood103, 4487–4495 (2004). ArticleCASPubMed Google Scholar
Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene23, 7150–7160 (2004). ArticleCASPubMed Google Scholar
Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self- renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA96, 3120–3125 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.18, 2747–2763 (2004). This paper provides genetic evidence that differential expression of MYC controls the balance between stem-cell self-renewal and differentiation by regulating entry and exit of HSCs from the endosteal niche. ArticleCASPubMedPubMed Central Google Scholar
Murphy, M. J., Wilson, A. & Trumpp, A. More than just proliferation: Myc function in stem cells. Trends Cell Biol.15, 128–137 (2005). ArticleCASPubMed Google Scholar
Patt, H. M. & Maloney, M. A. Bone formation and resorption as a requirement for marrow development. Proc. Soc. Exp. Biol. Med.140, 205–207 (1972). ArticleCASPubMed Google Scholar
Maloney, M. A. & Patt, H. M. On the origin of hematopoietic stem cells after local marrow extirpation. Proc. Soc. Exp. Biol. Med.149, 94–97 (1975). ArticleCASPubMed Google Scholar
Deguchi, K. et al. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem. Biophys. Res. Commun.255, 352–359 (1999). ArticleCASPubMed Google Scholar
Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science289, 1501–1504 (2000). ArticleCASPubMed Google Scholar
Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell2, 389–406 (2002). ArticleCASPubMed Google Scholar
Lord, B. I., Testa, N. G. & Hendry, J. H. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood46, 65–72 (1975). CASPubMed Google Scholar
Gong, J. K. Endosteal marrow: a rich source of hematopoietic stem cells. Science199, 1443–1445 (1978). This study provides the first functional evidence for the location of HSCs and progenitor cells close to endosteal surfaces of rat bone. ArticleCASPubMed Google Scholar
Askenasy, N. & Farkas, D. L. In vivo imaging studies of the effect of recipient conditioning, donor cell phenotype and antigen disparity on homing of haematopoietic cells to the bone marrow. Br. J. Haematol.120, 505–515 (2003). ArticlePubMed Google Scholar
Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature435, 969–973 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nilsson, S. K., Johnston, H. M. & Coverdale, J. A. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood97, 2293–2299 (2001). ArticleCASPubMed Google Scholar
Taichman, R. S. & Emerson, S. G. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells16, 7–15 (1998). ArticleCASPubMed Google Scholar
Taichman, R. S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood105, 2631–2639 (2005). ArticleCASPubMed Google Scholar
Oostendorp, R. A. et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood99, 1183–1189 (2002). ArticleCASPubMed Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). ArticleCASPubMed Google Scholar
Chen, D., Zhao, M. & Mundy, G. R. Bone morphogenetic proteins. Growth Factors22, 233–241 (2004). ArticleCASPubMed Google Scholar
Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3δk transgenic mice. J. Bone Miner. Res.16, 2222–2231 (2001). ArticleCASPubMed Google Scholar
Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood103, 3258–3264 (2004). This paper shows that conditional ablation of osteoblasts results in a reversible decrease of bone-marrow HSCs and extramedullary haematopoiesis, indicating that osteoblasts are not only required for maintenance of bone-marrow haematopoiesis, but are also an essential component of the niche. ArticleCASPubMed Google Scholar
Corral, D. A. et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl Acad. Sci. USA95, 13835–13840 (1998). ArticleCASPubMedPubMed Central Google Scholar
Huber, T. L., Kouskoff, V., Fehling, H. J., Palis, J. & Keller, G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature432, 625–630 (2004). ArticleCASPubMed Google Scholar
Ohneda, O. et al. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood92, 908–919 (1998). CASPubMed Google Scholar
Li, W. et al. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood102, 4345–4353 (2003). ArticleCASPubMed Google Scholar
Li, W., Johnson, S. A., Shelley, W. C. & Yoder, M. C. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp. Hematol.32, 1226–1237 (2004). ArticleCASPubMed Google Scholar
Kopp, H. G., Avecilla, S. T., Hooper, A. T. & Rafii, S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda Md.)20, 349–356 (2005). CAS Google Scholar
Avecilla, S. T. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Med.10, 64–71 (2004). ArticleCASPubMed Google Scholar
Rafii, S., Mohle, R., Shapiro, F., Frey, B. M. & Moore, M. A. Regulation of hematopoiesis by microvascular endothelium. Leuk. Lymphoma27, 375–386 (1997). ArticleCASPubMed Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109, 625–637 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rafii, S. et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood86, 3353–3363 (1995). CASPubMed Google Scholar
Delehanty, L. L. et al. Stromal inhibition of megakaryocytic differentiation is associated with blockade of sustained Rap1 activation. Blood101, 1744–1751 (2003). ArticleCASPubMed Google Scholar
Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behaviour within bone marrow during development. Immunity20, 707–718 (2004). ArticleCASPubMed Google Scholar
Papayannopoulou, T. Bone marrow homing: the players, the playfield, and their evolving roles. Curr. Opin. Hematol.10, 214–219 (2003). ArticlePubMed Google Scholar
Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood106, 1901–1910 (2005). ArticleCASPubMed Google Scholar
Cancelas, J. A. et al. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nature Med.11, 886–891 (2005). ArticleCASPubMed Google Scholar
Lapidot, T. & Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol.30, 973–981 (2002). ArticleCASPubMed Google Scholar
Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science294, 1933–1936 (2001). ArticleCASPubMed Google Scholar
Potocnik, A. J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity12, 653–663 (2000). ArticleCASPubMed Google Scholar
Nilsson, S. K. et al. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood101, 856–862 (2003). ArticleCASPubMed Google Scholar
Nilsson, S. K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood106, 1232–1239 (2005). ArticleCASPubMed Google Scholar
Ara, T. et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity19, 257–267 (2003). The authors show that CXCL12 has an important role in colonization of the bone marrow by HSCs. ArticleCASPubMed Google Scholar
Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest.106, 1331–1339 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wright, D. E., Bowman, E. P., Wagers, A. J., Butcher, E. C. & Weissman, I. L. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med.195, 1145–1154 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature382, 635–638 (1996). ArticleCASPubMed Google Scholar
Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature393, 595–599 (1998). ArticleCASPubMed Google Scholar
Gu, Y. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science302, 445–449 (2003). ArticleCASPubMed Google Scholar
Moore, K. A. Recent advances in defining the hematopoietic stem cell niche. Curr. Opin. Hematol.11, 107–111 (2004). ArticleCASPubMed Google Scholar
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signalling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCASPubMed Google Scholar
Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol.5, 247–253 (2004). ArticleCAS Google Scholar
Duncan, A. W. et al. Integration of Notch and Wnt signalling in hematopoietic stem cell maintenance. Nature Immunol.6, 314–322 (2005). ArticleCAS Google Scholar
Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signalling. Nature Med.6, 1278–1281 (2000). ArticleCASPubMed Google Scholar
Stier, S., Cheng, T., Dombkowski, D., Carlesso, N. & Scadden, D. T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favours lymphoid over myeloid lineage outcome. Blood99, 2369–2378 (2002). ArticleCASPubMed Google Scholar
Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol.14, 637–645 (2002). ArticleCASPubMed Google Scholar
Mancini, S. J. et al. Jagged1-dependent Notch signalling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood105, 2340–2342 (2005). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity18, 675–685 (2003). ArticleCASPubMed Google Scholar
Denhardt, D. T. & Guo, X. Osteopontin: a protein with diverse functions. FASEB J.7, 1475–1482 (1993). ArticleCASPubMed Google Scholar
Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med.201, 1781–1791 (2005). ArticleCASPubMedPubMed Central Google Scholar
Flanagan, J. G., Chan, D. C. & Leder, P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell64, 1025–1035 (1991). ArticleCASPubMed Google Scholar
Lyman, S. D. & Jacobsen, S. E. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood91, 1101–1134 (1998). CASPubMed Google Scholar
Miyazawa, K. et al. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood85, 641–649 (1995). CASPubMed Google Scholar
Kinashi, T. & Springer, T. A. Steel factor and c-kit regulate cell-matrix adhesion. Blood83, 1033–1038 (1994). CASPubMed Google Scholar
Kovach, N. L., Lin, N., Yednock, T., Harlan, J. M. & Broudy, V. C. Stem cell factor modulates avidity of α4 β1 and α5 β1 integrins expressed on hematopoietic cell lines. Blood85, 159–167 (1995). CASPubMed Google Scholar
Driessen, R. L., Johnston, H. M. & Nilsson, S. K. Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp. Hematol.31, 1284–1291 (2003). ArticleCASPubMed Google Scholar
Lotinun, S., Evans, G. L., Turner, R. T. & Oursler, M. J. Deletion of membrane-bound steel factor results in osteopenia in mice. J. Bone Miner. Res.20, 644–652 (2005). ArticleCASPubMed Google Scholar
Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol.181, 64–78 (1997). ArticleCASPubMed Google Scholar
Puri, M. C. & Bernstein, A. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc. Natl Acad. Sci. USA100, 12753–12758 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287, 1804–1808 (2000). ArticleCASPubMed Google Scholar
Cheng, T., Shen, H., Rodrigues, N., Stier, S. & Scadden, D. T. Transforming growth factor β1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood98, 3643–3649 (2001). ArticleCASPubMed Google Scholar
Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene22, 351–360 (2003). ArticleCASPubMed Google Scholar
Reiss, K. et al. ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO J.24, 742–752 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ito, K. et al. Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of β-catenin from cell–cell contacts. Oncogene18, 7080–7090 (1999). ArticleCASPubMed Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). This paper, together with reference 126, provides evidence of a positive role for WNT signalling in HSC self-renewal, whereas differentiation (at leastin vitro) is inhibited. ArticleCASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCASPubMed Google Scholar
Friedl, P. & Storim, J. Diversity in immune-cell interactions: states and functions of the immunological synapse. Trends Cell Biol.14, 557–567 (2004). ArticleCASPubMed Google Scholar
Sorrentino, B. P. Clinical strategies for expansion of haematopoietic stem cells. Nature Rev. Immunol.4, 878–888 (2004). ArticleCAS Google Scholar
Ploemacher, R. E. Stem cells: characterization and measurement. Baillieres Clin. Haematol.10, 429–444 (1997). ArticleCASPubMed Google Scholar
Morrison, S. J., Uchida, N. & Weissman, I. L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol.11, 35–71 (1995). ArticleCASPubMed Google Scholar
Visser, J. W., Bauman, J. G., Mulder, A. H., Eliason, J. F. & de Leeuw, A. M. Isolation of murine pluripotent hemopoietic stem cells. J. Exp. Med.159, 1576–1590 (1984). ArticleCASPubMed Google Scholar
Bunting, K. D. ABC Transporters as phenotypic markers and functional regulators of stem cells. Stem Cells20, 11–20 (2002). ArticleCASPubMed Google Scholar
Goodell, M. A., McKinney-Freeman, S. & Camargo, F. D. Isolation and characterization of side population cells. Methods Mol. Biol.290, 343–352 (2005). PubMed Google Scholar
Uchida, N., Dykstra, B., Lyons, K. J., Leung, F. Y. & Eaves, C. J. Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Exp. Hematol.31, 1338–1347 (2003). ArticleCASPubMed Google Scholar
Camargo, F. D., Chambers, S. M., Drew, E., McNagny, K. M. & Goodell, M. A. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood107, 501–507 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bradford, G. B., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol.25, 445–453 (1997). CASPubMed Google Scholar
Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997). ArticleCASPubMed Google Scholar
Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell89, 765–771 (1997). ArticleCASPubMed Google Scholar
Adams, G. D. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 28 Dec 2005 (doi:10.1038/nature04247).