Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny (original) (raw)
van Furth, R. et al. Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull. World Health Organ.47, 651–658 (in French) (1972). CASPubMedPubMed Central Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor-α. J. Exp. Med.179, 1109–1118 (1994). CASPubMed Google Scholar
Chomarat, P., Banchereau, J., Davoust, J. & Palucka, A. K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nature Immunol.1, 510–514 (2000). CAS Google Scholar
Metchnikoff, E. Ueber den Kampf der Zellen gegen Erypselkokken, ein Beitrag zur Phagocytenlehre. Arch. Pathol. Anat. [Virchows' Arch.]107, 209–249 (1887). Google Scholar
Metchnikoff, E. Leçons sur la Pathologie Comparée de l'Inflammation Faites à l'Institut Pasteur en Avril et Mai 1891 (G. Masson, 1892). Google Scholar
Austyn, J. M. & Gordon, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol.11, 805–815 (1981). CASPubMed Google Scholar
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med.137, 1142–1162 (1973). CASPubMedPubMed Central Google Scholar
Steinman, R. M. & Witmer, M. D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl Acad. Sci. USA75, 5132–5136 (1978). CASPubMed Google Scholar
Metlay, J. P. et al. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med.171, 1753–1771 (1990). CASPubMed Google Scholar
Nussenzweig, M. C. et al. Studies of the cell surface of mouse dendritic cells and other leukocytes. J. Exp. Med.154, 168–187 (1981). CASPubMedPubMed Central Google Scholar
Steinman, R. M., Kaplan, G., Witmer, M. D. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med.149, 1–16 (1979). CASPubMed Google Scholar
Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol.31, 563–604 (2013). CASPubMed Google Scholar
Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Rev. Immunol.14, 392–404 (2014). CAS Google Scholar
Mildner, A. & Jung, S. Development and function of dendritic cell subsets. Immunity40, 642–656 (2014). CASPubMed Google Scholar
Hume, D. A. Macrophages as APC and the dendritic cell myth. J. Immunol.181, 5829–5835 (2008). CASPubMed Google Scholar
Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity31, 502–512 (2009). CASPubMed Google Scholar
Kim, K. W. et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood118, e156–e167 (2011). CASPubMedPubMed Central Google Scholar
Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol.2, 361–367 (2001). CAS Google Scholar
Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity19, 59–70 (2003). CASPubMed Google Scholar
Dunay, I. R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity29, 306–317 (2008). CASPubMedPubMed Central Google Scholar
Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol.42, 3150–3166 (2012). CASPubMed Google Scholar
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science336, 86–90 (2012). CASPubMed Google Scholar
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). CASPubMed Google Scholar
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science330, 841–845 (2010). CASPubMedPubMed Central Google Scholar
Naito, M., Hasegawa, G. & Takahashi, K. Development, differentiation, and maturation of Kupffer cells. Microsc. Res. Tech.39, 350–364 (1997). CASPubMed Google Scholar
Yamada, M., Naito, M. & Takahashi, K. Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89. J. Leukoc. Biol.47, 195–205 (1990). CASPubMed Google Scholar
Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res.117, 145–152 (1999). CASPubMed Google Scholar
Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med.210, 1977–1992 (2013). CASPubMedPubMed Central Google Scholar
Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nature Immunol.14, 821–830 (2013). CAS Google Scholar
Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity39, 599–610 (2013). CASPubMed Google Scholar
Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity39, 925–938 (2013). CASPubMed Google Scholar
Avraham-Davidi, I. et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J. Exp. Med.210, 2611–2625 (2013). CASPubMedPubMed Central Google Scholar
Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol.8, 1217–1226 (2007). CAS Google Scholar
Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol.8, 1207–1216 (2007). CAS Google Scholar
Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood116, e74–e80 (2010). CASPubMed Google Scholar
Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science283, 1183–1186 (1999). CASPubMed Google Scholar
Vremec, D. & Shortman, K. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol.159, 565–573 (1997). CASPubMed Google Scholar
Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med.209, 1153–1165 (2012). CASPubMedPubMed Central Google Scholar
Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity38, 958–969 (2013). CASPubMed Google Scholar
Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity38, 970–983 (2013). CASPubMedPubMed Central Google Scholar
Mashayekhi, M. et al. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity35, 249–259 (2011). CASPubMedPubMed Central Google Scholar
Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity38, 322–335 (2013). CASPubMed Google Scholar
Desch, A. N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med.208, 1789–1797 (2011). CASPubMedPubMed Central Google Scholar
Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature496, 229–232 (2013). CASPubMed Google Scholar
Schraml, B. U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell154, 843–858 (2013). CASPubMed Google Scholar
Onai, N. et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity38, 943–957 (2013). CASPubMed Google Scholar
Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunol.7, 663–671 (2006). CAS Google Scholar
Diao, J., Winter, E., Chen, W., Cantin, C. & Cattral, M. S. Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J. Immunol.173, 1826–1833 (2004). CASPubMed Google Scholar
Toyama-Sorimachi, N. et al. Inhibitory NK receptor Ly49Q is expressed on subsets of dendritic cells in a cellular maturation- and cytokine stimulation-dependent manner. J. Immunol.174, 4621–4629 (2005). CASPubMed Google Scholar
Jackson, J. T. et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J.30, 2690–2704 (2011). CASPubMedPubMed Central Google Scholar
Corcoran, L. et al. The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol.170, 4926–4932 (2003). CASPubMed Google Scholar
Pelayo, R. et al. Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood105, 4407–4415 (2005). CASPubMedPubMed Central Google Scholar
McKenna, H. J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood95, 3489–3497 (2000). CASPubMed Google Scholar
Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunol.9, 676–683 (2008). CAS Google Scholar
Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med.206, 3115–3130 (2009). CASPubMedPubMed Central Google Scholar
Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med.196, 1415–1425 (2002). CASPubMedPubMed Central Google Scholar
Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nature Immunol.4, 380–386 (2003). CAS Google Scholar
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science322, 1097–1100 (2008). CASPubMedPubMed Central Google Scholar
Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood117, 6193–6197 (2011). CASPubMedPubMed Central Google Scholar
Wu, L. et al. RelB is essential for the development of myeloid-related CD8α- dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity9, 839–847 (1998). CASPubMed Google Scholar
Guerriero, A., Langmuir, P. B., Spain, L. M. & Scott, E. W. PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells. Blood95, 879–885 (2000). CASPubMed Google Scholar
Caton, M. L., Smith-Raska, M. R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen. J. Exp. Med.204, 1653–1664 (2007). CASPubMedPubMed Central Google Scholar
Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity35, 780–791 (2011). CASPubMedPubMed Central Google Scholar
Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunol.14, 937–948 (2013). CAS Google Scholar
Suzuki, S. et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α− dendritic cell development. Proc. Natl Acad. Sci. USA101, 8981–8986 (2004). CASPubMed Google Scholar
Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol.174, 2573–2581 (2005). CASPubMed Google Scholar
Seillet, C. et al. CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood121, 1574–1583 (2013). CASPubMed Google Scholar
Ghosh, H. S., Cisse, B., Bunin, A., Lewis, K. L. & Reizis, B. Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity33, 905–916 (2010). CASPubMedPubMed Central Google Scholar
Cisse, B. et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell135, 37–48 (2008). CASPubMedPubMed Central Google Scholar
Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med.209, 1167–1181 (2012). CASPubMedPubMed Central Google Scholar
Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol.193, 344–353 (2014). CASPubMed Google Scholar
Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity37, 1050–1060 (2012). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunol.13, 753–760 (2012). CAS Google Scholar
Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunol.13, 1118–1128 (2012). CAS Google Scholar
Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science344, 645–648 (2014). CASPubMedPubMed Central Google Scholar
Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell157, 832–844 (2014). CASPubMedPubMed Central Google Scholar
Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). CASPubMed Google Scholar
Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science325, 612–616 (2009). CASPubMedPubMed Central Google Scholar
Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science317, 666–670 (2007). CASPubMed Google Scholar
Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol.172, 4410–4417 (2004). PubMed Google Scholar
Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med.204, 171–180 (2007). CASPubMedPubMed Central Google Scholar
Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity40, 91–104 (2014). CASPubMedPubMed Central Google Scholar
Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med.204, 1057–1069 (2007). CASPubMedPubMed Central Google Scholar
Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain132, 2487–2500 (2009). PubMed Google Scholar
Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med.205, 869–882 (2008). CASPubMedPubMed Central Google Scholar
Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell143, 416–429 (2010). CASPubMedPubMed Central Google Scholar
Langlet, C. et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol.188, 1751–1760 (2012). CASPubMed Google Scholar
Xu, Y., Zhan, Y., Lew, A. M., Naik, S. H. & Kershaw, M. H. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J. Immunol.179, 7577–7584 (2007). CASPubMed Google Scholar
Robbins, S. H. et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol.9, R17 (2008). PubMedPubMed Central Google Scholar
Crozat, K. et al. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol. Rev.234, 177–198 (2010). CASPubMed Google Scholar
Guilliams, M. et al. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur. J. Immunol.40, 2089–2094 (2010). CASPubMed Google Scholar
Fairbairn, L. et al. Comparative analysis of monocyte subsets in the pig. J. Immunol.190, 6389–6396 (2013). CASPubMed Google Scholar
Chamorro, S. et al. Phenotypic characterization of monocyte subpopulations in the pig. Immunobiology202, 82–93 (2000). CASPubMed Google Scholar
Contreras, V. et al. Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J. Immunol.185, 3313–3325 (2010). CASPubMed Google Scholar
Marquet, F. et al. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model. PLoS ONE6, e16320 (2011). PubMedPubMed Central Google Scholar
Vu Manh, T. P. et al. Existence of conventional dendritic cells in Gallus gallus revealed by comparative gene expression profiling. J. Immunol.192, 4510–4517 (2014). CASPubMed Google Scholar
Dutertre, C. A. et al. TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques. J. Immunol.192, 4697–4708 (2014). CASPubMed Google Scholar
Segura, E. et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med.209, 653–660 (2012). CASPubMedPubMed Central Google Scholar
Summers, K. L., Hock, B. D., McKenzie, J. L. & Hart, D. N. Phenotypic characterization of five dendritic cell subsets in human tonsils. Am. J. Pathol.159, 285–295 (2001). CASPubMedPubMed Central Google Scholar
McIlroy, D. et al. Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors. Blood97, 3470–3477 (2001). CASPubMed Google Scholar
Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity37, 60–73 (2012). CASPubMedPubMed Central Google Scholar
Yu, C. I. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector t cells via the cytokine TGF-β. Immunity38, 818–830 (2013). CASPubMedPubMed Central Google Scholar
Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med.207, 1247–1260 (2010). CASPubMedPubMed Central Google Scholar
Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med.207, 1283–1292 (2010). CASPubMedPubMed Central Google Scholar
Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med.207, 1273–1281 (2010). CASPubMedPubMed Central Google Scholar
Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med.207, 1261–1271 (2010). CASPubMedPubMed Central Google Scholar
Galibert, L. et al. Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J. Biol. Chem.280, 21955–21964 (2005). CASPubMed Google Scholar
Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol.165, 566–572 (2000). CASPubMed Google Scholar
Poulin, L. F. et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and non-lymphoid tissues. Blood119, 6052–6062 (2012). CASPubMed Google Scholar
Watchmaker, P. B. et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nature Immunol.15, 98–108 (2014). CAS Google Scholar
Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med.206, 371–385 (2009). CASPubMedPubMed Central Google Scholar
Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med.208, 227–234 (2011). CASPubMedPubMed Central Google Scholar
Kanitakis, J., Morelon, E., Petruzzo, P., Badet, L. & Dubernard, J. M. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp. Dermatol.20, 145–146 (2011). CASPubMed Google Scholar
Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity33, 375–386 (2010). CASPubMedPubMed Central Google Scholar
Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood115, e10–e19 (2010). CASPubMedPubMed Central Google Scholar
Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity38, 336–348 (2013). CASPubMed Google Scholar
Guttman-Yassky, E. et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J. Allergy Clin. Immunol.119, 1210–1217 (2007). CASPubMed Google Scholar
Nakano, H., Yanagita, M. & Gunn, M. D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med.194, 1171–1178 (2001). CASPubMedPubMed Central Google Scholar
Lauterbach, H. et al. Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC. J. Exp. Med.207, 2703–2717 (2010). CASPubMedPubMed Central Google Scholar
Nizzoli, G. et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T cell responses. Blood122, 932–942 (2013). CASPubMed Google Scholar
Segura, E. & Amigorena, S. Cross-presentation by human dendritic cell subsets. Immunol. Lett.158, 73–78 (2014). CASPubMed Google Scholar
Tauber, A. & Chernyak, L. Metchnikoff and the Origins of Immunology: From Metaphor to Theory (Oxford Univ. Press, 1991). Google Scholar
Gordon, S. Elie Metchnikoff: father of natural immunity. Eur. J. Immunol.38, 3257–3264 (2008). CASPubMed Google Scholar
Florey, H. General Pathology (Lloyd-Luke, 1970). Google Scholar
Aschoff, L. Das reticuloendotheliale System. Erg. Inn. Med. Kinderheilk.26, 1–118 (1924). Google Scholar
Carrel, A. & Ebeling, A. H. The fundamental properties of the fibroblast and the macrophage: II. the macrophage. J. Exp. Med.44, 285–305 (1926). CASPubMedPubMed Central Google Scholar
Awrorow, P. P. & Timofejewskij, A. D. in Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin. Vol. 216, 184–214 (Springer, 1914). Google Scholar
Lewis, M. R. & Lewis, W. H. The transformation of white blood cells into clasmatocytes (macrophages), epithelioid cells, and giant cells. J. Am. Med. Associ.84, 798–799 (1925). Google Scholar
Ebert, R. H. & Florey, H. W. The extravascular development of the monocyte observed in vivo. Br. J. Exp. Pathol.20, 342–356 (1939). PubMed Central Google Scholar
Volkman, A. & Gowans, J. L. The origin of macrophages from bone marrow in the rat. Br. J. Exp. Pathol.46, 62–70 (1965). CASPubMedPubMed Central Google Scholar
Gall, E. A. The cytological identity and interrelation of mesenchymal cells of lymphoid tissue. Ann. NY Acad. Sci.73, 120–130 (1958). CASPubMed Google Scholar
Ratcliffe, N. A. & Rowley, A. F. Invertebrate Blood Cells (Academic Press, 1981). Google Scholar
George, W. C. Comparative hematology and the functions of the leucocytes. Quarterly Rev. Biol.16, 426–439 (1941). Google Scholar
Maximow, A. Uber die Entwicklung der blut - und Bindegewebszellen beim Saugetierembryo. Folia Haematol.4, 16 (1907). Google Scholar
Mosier, D. E. & Coppleson, L. W. A three-cell interaction required for the induction of the primary immune response in vitro. Proc. Natl Acad. Sci. USA61, 542–547 (1968). CASPubMed Google Scholar
van Furth, R. in Methods for Studying Mononuclear Phagocytes (eds Adams, D. O., Edelson, P. J. & Koren, H.) 243–252 (Academic Press, 1980). Google Scholar
Foucar, K. & Foucar, E. The mononuclear phagocyte and immunoregulatory effector (M-PIRE) system: evolving concepts. Semin. Diagn. Pathol.7, 4–18 (1990). CASPubMed Google Scholar
Goerdt, S., Kodelja, V., Schmuth, M., Orfanos, C. E. & Sorg, C. The mononuclear phagocyte-dendritic cell dichotomy: myths, facts, and a revised concept. Clin. Exp. Immunol.105, 1–9 (1996). CASPubMedPubMed Central Google Scholar
Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013). CASPubMed Google Scholar
Witmer-Pack, M. D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci.104, 1021–1029 (1993). PubMed Google Scholar
Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res.114, 1611–1622 (2014). CASPubMedPubMed Central Google Scholar