Genome-wide mapping and analysis of chromosome architecture (original) (raw)
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012).
Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature518, 317–330 (2015).
Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell152, 1270–1284 (2013). ArticleCASPubMed Google Scholar
de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature502, 499–506 (2013). ArticleCASPubMed Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485, 376–380 (2012). The original study to describe TADs from Hi-C analysis, using novel computation approaches. It discovered that TADs are conserved between cell types and species, and demarcated by CCCTC-binding factor (CTCF) binding at TAD boundaries. ArticleCASPubMedPubMed Central Google Scholar
Nora, E. P., Dekker, J. & Heard, E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bioessays35, 818–828 (2013). ArticleCASPubMedPubMed Central Google Scholar
Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell153, 1281–1295 (2013). ArticleCASPubMedPubMed Central Google Scholar
Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell149, 1233–1244 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, A. & Dean, A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol. Cells34, 1–5 (2012). ArticleCASPubMedPubMed Central Google Scholar
Krivega, I. & Dean, A. Enhancer and promoter interactions-long distance calls. Curr. Opin. Genet. Dev.22, 79–85 (2012). ArticleCASPubMed Google Scholar
Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell159, 374–387 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature503, 290–294 (2013). The first paper to report Hi-C interaction maps at the resolution of individual restriction fragments in mammals. This study also introduced the global background model. ArticleCASPubMedPubMed Central Google Scholar
Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell148, 84–98 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). The original study describing Hi-C technology. This study was also the first to describe the genome compartments A and B, which respectively mark colocalizing active and repressed regions of the genome. ArticleCASPubMedPubMed Central Google Scholar
Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol.30, 90–98 (2012). ArticleCAS Google Scholar
Hughes, J. R. et al. Analysis of hundreds of _cis_-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet.46, 205–212 (2014). ArticleCASPubMed Google Scholar
Kolovos, P. et al. Targeted chromatin capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin7, 10 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell159, 1665–1680 (2014). The highest-resolution Hi-C analysis to date, at 1–5kb resolution in 9 human and mouse cell types. This study reports that the genome is organized globally into 6 sub-compartments, within which the genome is organized into ∼10,000 chromatin loops, many of which are conserved across species and cell types, and are anchored by CTCF binding in convergent orientation. ArticleCASPubMedPubMed Central Google Scholar
Selvaraj, S., R. Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol.31, 1111–1118 (2013). ArticleCASPubMedPubMed Central Google Scholar
Selvaraj, S., Schmitt, A. D., Dixon, J. R. & Ren, B. Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. BMC Genomics16, 900 (2015). ArticleCASPubMedPubMed Central Google Scholar
de Vree, P. J. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol.32, 1019–1025 (2014). ArticleCASPubMed Google Scholar
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol.31, 1119–1125 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, N. & Dekker, J. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol.31, 1143–1147 (2013). ArticleCASPubMedPubMed Central Google Scholar
Marie-Nelly, H. et al. High-quality genome (re)assembly using chromosomal contact data. Nat. Commun.5, 5695 (2014). ArticleCASPubMed Google Scholar
Beitel, C. W. et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ2, e415 (2014). ArticleCASPubMedPubMed Central Google Scholar
Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda)4, 1339–1346 (2014). ArticleCAS Google Scholar
Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife3, e03318 (2014). ArticlePubMedPubMed Central Google Scholar
Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature502, 59–64 (2013). ArticleCASPubMed Google Scholar
Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet.16, 344–358 (2015). ArticleCASPubMed Google Scholar
Flot, J. F., Marie-Nelly, H. & Koszul, R. Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. FEBS Lett.589, 2966–2974 (2015). ArticleCASPubMed Google Scholar
Serra, F. et al. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett.589, 2987–2995 (2015). ArticleCASPubMed Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). The original study describing 3C technology. ArticleCASPubMed Google Scholar
Cullen, K. E., Kladde, M. P. & Seyfred, M. A. Interaction between transcription regulatory regions of prolactin chromatin. Science261, 203–206 (1993). ArticleCASPubMed Google Scholar
Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet.38, 1341–1347 (2006). A study reporting chromosome conformation capture-on-chip (4C), which explores the genome-wide interactions of individual loci at high resolution. ArticleCASPubMed Google Scholar
van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods9, 969–972 (2012). ArticleCASPubMed Google Scholar
Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell148, 458–472 (2012). ArticleCASPubMed Google Scholar
Ma, W. et al. Fine-scale chromatin interaction maps reveal the _cis_-regulatory landscape of human lincRNA genes. Nat. Methods12, 71–78 (2015). The first study to report the use of DNase Hi-C and DNase Capture-HiC, and the first application of Capture-HiC to specifically enrich for gene promoters. ArticleCASPubMed Google Scholar
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet.38, 1348–1354 (2006). Another study reporting chromosome conformation capture-on-chip (4C), which explores the genome- wide interactions of individual loci at high resolution. ArticleCASPubMed Google Scholar
Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res.16, 1299–1309 (2006). The original study describing 5C, which explores the interaction profiles of several contiguous loci with each other at high resolution. ArticleCASPubMedPubMed Central Google Scholar
Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun.6, 10069 (2015). ArticleCASPubMed Google Scholar
Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet.47, 598–606 (2015). ArticleCASPubMed Google Scholar
Sahlen, P. et al. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol.16, 156 (2015). ArticleCASPubMedPubMed Central Google Scholar
Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res.25, 582–597 (2015). The first application of Capture-HiC to capture all promoters in the genome, demonstrating the feasibility and quality of obtaining high-resolution promoter interaction profiles for >20,000 loci in a single assay. ArticleCASPubMedPubMed Central Google Scholar
Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet.47, 1179–1186 (2015). ArticleCASPubMedPubMed Central Google Scholar
Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res.24, 1854–1868 (2014). The original study describing Capture-HiC technology and its use to interrogate the interaction landscapes of several disease-associated risk loci. ArticleCASPubMedPubMed Central Google Scholar
Jager, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat. Commun.6, 6178 (2015). ArticleCASPubMed Google Scholar
Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA112, E6456–E6465 (2015). ArticleCASPubMedPubMed Central Google Scholar
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature518, 331–336 (2015). A high-resolution Hi-C analysis in human embryonic stem cells and four derived cell types, revealing a relationship between dynamic chromatin organization and gene expression, as well as haplotype-resolved dynamics in chromatin organization patterns. ArticleCASPubMedPubMed Central Google Scholar
Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol.11, 852 (2015). ArticleCASPubMedPubMed Central Google Scholar
Seitan, V. C. et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res.23, 2066–2077 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA111, 996–1001 (2014). ArticleCASPubMed Google Scholar
Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods58, 268–276 (2012). ArticleCASPubMed Google Scholar
van Berkum, N. L. et al. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp.39, 1869 (2010). Google Scholar
Comet, I., Schuettengruber, B., Sexton, T. & Cavalli, G. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc. Natl Acad. Sci. USA108, 2294–2299 (2011). ArticlePubMedPubMed Central Google Scholar
van de Werken, H. J. et al. 4C technology: protocols and data analysis. Methods Enzymol.513, 89–112 (2012). ArticleCASPubMed Google Scholar
Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol.11, R119 (2010). ArticleCASPubMedPubMed Central Google Scholar
Williamson, I. et al. Anterior-posterior differences in HoxD chromatin topology in limb development. Development139, 3157–3167 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bickmore, W. A. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet.14, 67–84 (2013). ArticleCASPubMed Google Scholar
Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev.28, 2778–2791 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet.43, 1059–1065 (2011). ArticleCASPubMed Google Scholar
Li, W., Gong, K., Li, Q., Alber, F. & Zhou, X. J. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data. Bioinformatics31, 960–962 (2015). ArticleCASPubMed Google Scholar
Knopp, P. & Sinkhorn, R. Concerning nonnegative matrices and doubly stochastic matrices. Pacif. J. Math.21, 343–348 (1967). Article Google Scholar
Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Analysis33, 1029–1047 (2012). Article Google Scholar
Shavit, Y. & Lio, P. Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data. Mol. Biosyst.10, 1576–1585 (2014). ArticleCASPubMed Google Scholar
Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in capture Hi-C data. Genome Biol.17, 127 (2015). ArticleCAS Google Scholar
Cournac, A., Marie-Nelly, H., Marbouty, M., Koszul, R. & Mozziconacci, J. Normalization of a chromosomal contact map. BMC Genomics13, 436 (2012). ArticleCASPubMedPubMed Central Google Scholar
Filippova, D., Patro, R., Duggal, G. & Kingsford, C. Identification of alternative topological domains in chromatin. Algorithms Mol. Biol.9, 14 (2014). ArticlePubMedPubMed Central Google Scholar
Levy-Leduc, C., Delattre, M., Mary-Huard, T. & Robin, S. Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics30, i386–i392 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res.24, 999–1011 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mifsud, B. et al. GOTHiC, a simple probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. Preprint at bioRxivhttp://dx.doi.org/10.1101/023317 (2015).
Xu, Z. et al. A hidden Markov random field based Bayesian method for the detection of long-range chromosomal intereactions in Hi-C data. Bioinformatics32, 650–656 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lun, A. T. & Smyth, G. K. diffHic: a bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics16, 258 (2015). ArticleCASPubMedPubMed Central Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010). ArticleCASPubMed Google Scholar
Nagano, T. et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc.10, 1986–2003 (2015). ArticleCASPubMed Google Scholar
Dekker, J. The three 'C' s of chromosome conformation capture: controls, controls, controls. Nat. Methods3, 17–21 (2006). ArticleCASPubMed Google Scholar
Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc.2, 1722–1733 (2007). ArticleCASPubMed Google Scholar
Louwers, M., Splinter, E., van Driel, R., de Laat, W. & Stam, M. Studying physical chromatin interactions in plants using chromosome conformation capture (3C). Nat. Protoc.4, 1216–1229 (2009). ArticleCASPubMed Google Scholar
Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Analysis of long-range chromatin interactions using chromosome conformation capture. Methods58, 192–203 (2012). ArticleCASPubMed Google Scholar
Ribeiro de Almeida, C. et al. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus. Immunity35, 501–513 (2011). ArticleCASPubMed Google Scholar
Stadhouders, R. et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc.8, 509–524 (2013). ArticleCASPubMed Google Scholar
Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res.14, 477–495 (2006). ArticleCASPubMed Google Scholar
Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature470, 264–268 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gondor, A., Rougier, C. & Ohlsson, R. High-resolution circular chromosome conformation capture assay. Nat. Protoc.3, 303–313 (2008). ArticleCASPubMed Google Scholar
Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev.25, 1371–1383 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gheldof, N., Leleu, M., Noordermeer, D., Rougemont, J. & Reymond, A. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method. Methods Mol. Biol.786, 211–225 (2012). ArticleCASPubMed Google Scholar
Splinter, E., de Wit, E., van de Werken, H. J., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods58, 221–230 (2012). ArticleCASPubMed Google Scholar
Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet.42, 53–61 (2010). ArticleCASPubMed Google Scholar
Sexton, T. et al. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat. Protoc.7, 1335–1350 (2012). ArticleCASPubMed Google Scholar
Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science312, 269–272 (2006). ArticleCASPubMed Google Scholar
Ling, J. & Hoffman, A. R. Associated chromosome trap for identifying long-range DNA interactions. J. Vis. Exp.50, 2621 (2011). Google Scholar
Ferraiuolo, M. A., Sanyal, A., Naumova, N., Dekker, J. & Dostie, J. From cells to chromatin: capturing snapshots of genome organization with 5C technology. Methods58, 255–267 (2012). ArticleCASPubMed Google Scholar
Fraser, J., Ethier, S. D., Miura, H. & Dostie, J. A. Torrent of data: mapping chromatin organization using 5C and high-throughput sequencing. Methods Enzymol.513, 113–141 (2012). ArticleCASPubMed Google Scholar
Umbarger, M. A. Chromosome conformation capture assays in bacteria. Methods58, 212–220 (2012). ArticleCASPubMed Google Scholar
Rodley, C. D., Bertels, F., Jones, B. & O'Sullivan, J. M. Global identification of yeast chromosome interactions using genome conformation capture. Fungal Genet. Biol.46, 879–886 (2009). ArticleCASPubMed Google Scholar
Tanizawa, H. et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res.38, 8164–8177 (2010). ArticleCASPubMedPubMed Central Google Scholar