The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men (original) (raw)
Gershey, E. L., Vidali, G. & Allfrey, V. G. Chemical studies of histone acetylation. The occurrence of ε-_N_-acetyllysine in the f2a1 histone. J. Biol. Chem.243, 5018–5022 (1968). CASPubMed Google Scholar
Inoue, A. & Fujimoto, D. Enzymatic deacetylation of histone. Biochem. Biophys. Res. Commun.36, 146–150 (1969). CASPubMed Google Scholar
Candido, E. P., Reeves, R. & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell14, 105–113 (1978). CASPubMed Google Scholar
Sealy, L. & Chalkley, R. The effect of sodium butyrate on histone modification. Cell14, 115–121 (1978). CASPubMed Google Scholar
Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc. Natl Acad. Sci. USA75, 2239–2243 (1978). CASPubMedPubMed Central Google Scholar
Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem.265, 17174–17179 (1990). Identified the first specific HDAC inhibitor and linked HDAC inhibition to cell growth arrest. CASPubMed Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996). Affinity purification and identification of the first HDAC, supporting the link between gene silencing and histone deacetylation. CASPubMed Google Scholar
Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 6317–6327 (1991). CASPubMedPubMed Central Google Scholar
Yang, W. M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA93, 12845–12850 (1996). First report on the direct physical link of Rpd3 to a sequence-specific transcriptional repressor. CASPubMedPubMed Central Google Scholar
Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA93, 14503–14508 (1996). Discovery of Hda1 and Rpd3 as deacetylase subunits of two multiprotein complexes and identification of related proteins in bacteria. CASPubMedPubMed Central Google Scholar
Grozinger, C. M. & Schreiber, S. L. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol.9, 3–16 (2002). CASPubMed Google Scholar
Haigis, M. C. & Guarente, L. P. Mammalian sirtuins — emerging roles in physiology, aging, and calorie restriction. Genes Dev.20, 2913–2921 (2006). CASPubMed Google Scholar
de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370, 737–749 (2003). CASPubMedPubMed Central Google Scholar
Khochbin, S., Verdel, A., Lemercier, C. & Seigneurin-Berny, D. Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev.11, 162–166 (2001). CASPubMed Google Scholar
Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet.19, 286–293 (2003). CASPubMed Google Scholar
Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338, 17–31 (2004). An elegant phylogenetic analysis about different groups of HDACs. CASPubMed Google Scholar
Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell128, 635–638 (2007). CASPubMed Google Scholar
Millar, C. B. & Grunstein, M. Genome-wide patterns of histone modifications in yeast. Nature Rev. Mol. Cell. Biol.7, 657–666 (2006). CAS Google Scholar
Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnol.25, 84–90 (2007). CAS Google Scholar
Butler, R. & Bates, G. P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Rev. Neurosci.7, 784–796 (2006). CAS Google Scholar
Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nature Struct. Mol. Biol.14, 372–380 (2007). CAS Google Scholar
Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem.93, 57–67 (2004). CASPubMed Google Scholar
Zhang, X. et al. Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev.19, 827–839 (2005). CASPubMedPubMed Central Google Scholar
Lee, H., Rezai-Zadeh, N. & Seto, E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol. Cell. Biol.24, 765–773 (2004). CASPubMedPubMed Central Google Scholar
Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA101, 15064–15069 (2004). CASPubMedPubMed Central Google Scholar
Yang, X. J. & Grégoire, S. Class II histone deacetylases: from sequence to function, regulation and clinical implication. Mol. Cell. Biol.25, 2873–2884 (2005). CASPubMedPubMed Central Google Scholar
Han, A., He, J., Wu, Y., Liu, J. O. & Chen, L. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J. Mol. Biol.345, 91–102 (2005). CASPubMed Google Scholar
Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell9, 45–57 (2002). CASPubMed Google Scholar
Lamb, N. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA104, 17355–17340 (2007). Google Scholar
Moreth, K. et al. An active site tyrosine residue is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme. Biochem. J.401, 659–665 (2007). CASPubMedPubMed Central Google Scholar
Boyault, C., Sadoul, K., Pabion, M. & Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene26, 5468–5476 (2007). CASPubMed Google Scholar
Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem.277, 25748–25755 (2002). CASPubMed Google Scholar
Somoza, J. R. et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure12, 1325–1334 (2004). CASPubMed Google Scholar
Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature401, 188–193 (1999). CASPubMed Google Scholar
Nielsen, T. K., Hildmann, C., Dickmanns, A., Schwienhorst, A. & Ficner, R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J. Mol. Biol.354, 107–120 (2005). CASPubMed Google Scholar
Boyer, L. A., Latek, R. R. & Peterson, C. L. The SANT domain: a unique histone-tail-binding module? Nature Rev. Mol. Cell. Biol.5, 158–163 (2004). CAS Google Scholar
Kasten, M. M., Dorland, S. & Stillman, D. J. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell. Biol.17, 4852–4858 (1997). CASPubMedPubMed Central Google Scholar
Keogh, M. C. et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell123, 593–605 (2005). CASPubMed Google Scholar
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell123, 581–592 (2005). CASPubMed Google Scholar
Colina, A. R. & Young, D. Raf60, a novel component of the Rpd3 histone deacetylase complex required for Rpd3 activity in Saccharomyces cerevisiae. J. Biol. Chem.280, 42552–42556 (2005). CASPubMed Google Scholar
Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell89, 365–371 (1997). CASPubMed Google Scholar
Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell20, 971–978 (2005). CASPubMed Google Scholar
Li, B. et al. Combined action of PHD and chromodomains directs the Rpd3S HDAC to transcribed chromatin. Science316, 1050–1054 (2007). CASPubMed Google Scholar
Ahringer, J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet.16, 351–356 (2000). CASPubMed Google Scholar
Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature442, 96–99 (2006). CASPubMedPubMed Central Google Scholar
Le Guezennec, X., Vermeulen, M. & Stunnenberg, H. G. Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners. Nucleic Acids Res.34, 3929–3937 (2006). CASPubMedPubMed Central Google Scholar
Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene26, 5433–5438 (2007). CASPubMed Google Scholar
Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31, 89–97 (2006). CASPubMed Google Scholar
Andres, M. E. et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA96, 9873–9878 (1999). CASPubMedPubMed Central Google Scholar
You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST–human histone deacetylase complex. Proc. Natl Acad. Sci. USA98, 1454–1458 (2001). CASPubMedPubMed Central Google Scholar
Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem.276, 6812–6824 (2001). Google Scholar
Hakimi, M. A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl Acad. Sci. USA99, 7420–7425 (2002). CASPubMedPubMed Central Google Scholar
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119, 941–953 (2004). CASPubMed Google Scholar
Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature437, 432–435 (2005). CASPubMed Google Scholar
Lee, M. G. et al. Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol.26, 6395–6402 (2006). CASPubMedPubMed Central Google Scholar
Wen, Y. D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl Acad. Sci. USA97, 7202–7207 (2000). CASPubMedPubMed Central Google Scholar
Zhang, J., Kalkum, M., Chait, B. T. & Roeder, R. G. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell9, 611–623 (2002). CASPubMed Google Scholar
Karagianni, P. & Wong, J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene26, 5439–5449 (2007). CASPubMed Google Scholar
Guenther, M. G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev.14, 1048–1057 (2000). CASPubMedPubMed Central Google Scholar
Li, J. et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.19, 4342–4350 (2000). CASPubMedPubMed Central Google Scholar
Underhill, C., Qutob, M. S., Yee, S. P. & Torchia, J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J. Biol. Chem.275, 40463–40470 (2000). CASPubMed Google Scholar
Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol.21, 6091–6101 (2001). CASPubMedPubMed Central Google Scholar
Wu, J., Carmen, A. A., Kobayashi, R., Suka, N. & Grunstein, M. HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc. Natl Acad. Sci. USA98, 4391–4396 (2001). CASPubMedPubMed Central Google Scholar
Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell128, 491–504 (2007). CASPubMed Google Scholar
Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA97, 7835–7840 (2000). CASPubMedPubMed Central Google Scholar
Seigneurin-Berny, D. et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol.21, 8035–8044 (2001). CASPubMedPubMed Central Google Scholar
Zhang, X. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell27, 197–213 (2007). CASPubMedPubMed Central Google Scholar
McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature408, 106–111 (2000). First report on the kinase-mediated nuclear export of a class IIa HDAC. CASPubMedPubMed Central Google Scholar
McKinsey, T. A. & Olson, E. N. Cardiac histone acetylation — therapeutic opportunities abound. Trends Genet.20, 206–213 (2004). CASPubMed Google Scholar
Martin, M., Kettmann, R. & Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene26, 5450–5467 (2007). CASPubMed Google Scholar
Zhang, C. L., McKinsey, T. A. & Olson, E. N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl Acad. Sci. USA98, 7354–7359 (2001). CASPubMedPubMed Central Google Scholar
van der Linden, A. M., Nolan, K. M. & Sengupta, P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J.26, 358–370 (2007). CASPubMed Google Scholar
Li, X., Song, S., Liu, Y., Ko, S. H. & Kao, H. Y. Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J. Biol. Chem.279, 34201–34208 (2004). CASPubMed Google Scholar
Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest.117, 2459–2467 (2007). CASPubMedPubMed Central Google Scholar
Linseman, D. A. et al. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca2+/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J. Biol. Chem.278, 41472–41481 (2003). CASPubMed Google Scholar
Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell. Biol.24, 8374–8385 (2004). CASPubMedPubMed Central Google Scholar
Parra, M., Kasler, H., McKinsey, T. A., Olson, E. N. & Verdin, E. Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after TCR activation. J. Biol. Chem.280, 13762–13770 (2005). CASPubMed Google Scholar
Dequiedt, F. et al. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J. Exp. Med.201, 793–804 (2005). CASPubMedPubMed Central Google Scholar
Chang, S., Bezprozvannaya, S., Li, S. & Olson, E. N. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc. Natl Acad. Sci. USA102, 8120–8125 (2005). CASPubMedPubMed Central Google Scholar
Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med.13, 597–603 (2007). CASPubMed Google Scholar
Kim, M. A. et al. Identification of novel substrates for human checkpoint kinase Chk1 and Chk2 through genome-wide screening using a consensus Chk phosphorylation motif. Exp. Mol. Med.39, 205–212 (2007). CASPubMed Google Scholar
Parra, M., Mahmoudi, T. & Verdin, E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev.21, 638–643 (2007). Shows that a PP1 phosphatase complex is directly involved in controlling the nucleocytoplasmic trafficking of HDAC7. CASPubMedPubMed Central Google Scholar
Sucharov, C. C., Langer, S., Bristow, M. & Leinwand, L. Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. Am. J. Physiol. Cell Physiol.291, C1029–C1037 (2006). CASPubMed Google Scholar
Illi, B. et al. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling. Circ. Res.102, 51–58 (2007). PubMed Google Scholar
Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J.21, 2682–2691 (2002). CASPubMedPubMed Central Google Scholar
Petrie, K. et al. The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem.278, 16059–16072 (2003). CASPubMed Google Scholar
Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem.276, 35368–35374 (2001). CASPubMed Google Scholar
Paroni, G. et al. Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol. Biol. Cell15, 2804–2818 (2004). CASPubMedPubMed Central Google Scholar
Liu, F., Dowling, M., Yang, X. J. & Kao, G. D. Caspase-mediated specific cleavage of human histone deacetylase 4. J. Biol. Chem.279, 34537–34546 (2004). CASPubMed Google Scholar
Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet.38, 228–233 (2006). CASPubMed Google Scholar
Haberland, M. et al. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol. Cell. Biol.27, 518–525 (2007). CASPubMed Google Scholar
Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature417, 455–458 (2002). First report on the unexpected α-tubulin deacetylase activity of HDAC6. CASPubMed Google Scholar
Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J.21, 6820–6831 (2002). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J.22, 1168–1179 (2003). CASPubMedPubMed Central Google Scholar
Tran, A. D. et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci.120, 1469–1479 (2007). CASPubMed Google Scholar
Serrador, J. M. et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity20, 417–428 (2004). CASPubMed Google Scholar
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.16, 2166–2172 (2006). CASPubMed Google Scholar
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci.27, 3571–3583 (2007). CASPubMedPubMed Central Google Scholar
Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell129, 1351–1363 (2007). CASPubMedPubMed Central Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). CASPubMed Google Scholar
Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem.280, 26729–26734 (2005). CASPubMed Google Scholar
Murphy, P. J., Morishima, Y., Kovacs, J. J., Yao, T. P. & Pratt, W. B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem.280, 33792–33799 (2005). CASPubMed Google Scholar
Scroggins, B. T. et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell25, 151–159 (2007). References 103–105 demonstrate that HDAC6 binds to and deacetylates HSP90, thereby regulating its chaperone activity towards client proteins. CASPubMedPubMed Central Google Scholar
Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol.10, 524–530 (2000). CASPubMed Google Scholar
Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell115, 727–738 (2003). Demonstrates that HDAC6 has a key role in aggresome formation, thereby linking this deacetylase to the cellular management of misfolded proteins. CASPubMed Google Scholar
Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature447, 859–863 (2007). CASPubMed Google Scholar
Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem.280, 40282–40292 (2005). References 109 and 110 report the unexpected link of HDAC6 to autophagy. CASPubMed Google Scholar
Boyault, C. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev.21, 2172–2181 (2007). An elegant study linking HDAC6 to the activation of the transcription factor HSF1 in response to cytotoxic protein aggregates. CASPubMedPubMed Central Google Scholar
Kwon, S., Zhang, Y. & Matthias, P. The deacetylase HDAC6 is a novel essential component of stress granules involved in the stress response. Genes Dev.21, 3381–3394 (2007). Describes the discovery of an unexpected link between HDAC6 and the formation of stress granules. CASPubMedPubMed Central Google Scholar
Gao, Y. S. et al. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol. Cell. Biol.27, 8637–8647 (2007). CASPubMedPubMed Central Google Scholar
Arnold, M. A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell12, 377–389 (2007). CASPubMed Google Scholar
Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell5, 455–463 (2004). CASPubMed Google Scholar
Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nature Genet.38, 566–569 (2006). CASPubMed Google Scholar
Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov.5, 769–784 (2006). CAS Google Scholar
Minetti, G. C. et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Med.12, 1147–1150 (2006). CASPubMed Google Scholar
Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest.117, 659–671 (2007). CASPubMedPubMed Central Google Scholar
Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med.13, 1299–1307 (2007). CASPubMed Google Scholar
Foglietti, C. et al. Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. J. Biol. Chem.281, 17968–17976 (2006). CASPubMed Google Scholar
Senese, S. et al. Role for histone deacetylase 1 in human tumor cell proliferation. Mol. Cell. Biol.27, 4784–4795 (2007). CASPubMedPubMed Central Google Scholar
Iwabata, H., Yoshida, M. & Komatsu, Y. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics5, 4653–4664 (2005). CASPubMed Google Scholar
Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell23, 607–618 (2006). CASPubMed Google Scholar
Xie, H., Bandhakavi, S., Roe, M. R. & Griffin, T. J. Preparative peptide isoelectric focusing as a tool for improving the identification of lysine-acetylated peptides from complex mixtures. J. Proteome Res.6, 2019–2026 (2007). CASPubMed Google Scholar
Jiang, T., Zhou, X., Taghizadeh, K., Dong, M. & Dedon, P. C. _N_-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc. Natl Acad. Sci. USA104, 60–65 (2007). CASPubMed Google Scholar
Chen, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics6, 812–819 (2007). CASPubMed Google Scholar
Garrity, J., Gardner, J. G., Hawse, W., Wolberger, C. & Escalante-Semerena, J. C. _N_-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem.282, 30239–30245 (2007). CASPubMed Google Scholar
Mukherjee, S., Hao, Y. H. & Orth, K. A newly discovered post-translational modification — the acetylation of serine and threonine residues. Trends Biochem. Sci.32, 210–216 (2007). CASPubMed Google Scholar
Yang, X. J. & Grégoire, S. Metabolism, cytoskeleton and cellular signaling in the grip of protein _N_ε- and _O_-acetylation. EMBO Rep.8, 556–561 (2007). CASPubMedPubMed Central Google Scholar
Mattagajasingh, I. et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA104, 14855–14860 (2007). CASPubMedPubMed Central Google Scholar
Tang, X. et al. Acetylation-dependent signal transduction for type I interferon receptor. Cell31, 93–105 (2007). Google Scholar
Lambard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol.27, 8807–8814 (2007). Google Scholar
Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nature Rev. Mol. Cell. Biol.7, 473–483 (2006). CAS Google Scholar
Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science298, 2390–2392 (2002). CASPubMed Google Scholar
Gardner, J. G., Grundy, F. J., Henkin, T. M. & Escalante-Semerena, J. C. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J. Bacteriol.188, 5460–5468 (2006). CASPubMedPubMed Central Google Scholar
Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA103, 10230–10235 (2006). CASPubMedPubMed Central Google Scholar
Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA103, 10224–10229 (2006). CASPubMedPubMed Central Google Scholar
Yang, X. J. & Grégoire, S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol. Cell23, 779–786 (2006). PubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002). CASPubMedPubMed Central Google Scholar
Montgomery, R. L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev.21, 1790–1802 (2007). CASPubMedPubMed Central Google Scholar
Zimmermann, S. et al. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res.67, 9047–9054 (2007). CASPubMed Google Scholar
Dannenberg, J. H. et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev.19, 1581–1595 (2005). CASPubMedPubMed Central Google Scholar
Cowley, S. M. et al. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol. Cell. Biol.25, 6990–7004 (2005). CASPubMedPubMed Central Google Scholar
David, G., Turner, G. M., Yao, Y., Protopopov, A. & DePinho, R. A. mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev.17, 2396–2405 (2003). CASPubMedPubMed Central Google Scholar
Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity20, 719–733 (2004). CASPubMed Google Scholar
Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol.8, 285–292 (2006). CASPubMed Google Scholar
Marino, S. & Nusse, R. Mutants in the mouse NuRD/Mi2 component P66α are embryonic lethal. PLoS ONE2, e519 (2007). PubMedPubMed Central Google Scholar
Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature446, 882–887 (2007). CASPubMed Google Scholar
Hermanson, O., Jepsen, K. & Rosenfeld, M. G. N-CoR controls differentiation of neural stem cells into astrocytes. Nature419, 934–939 (2002). CASPubMed Google Scholar
Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell119, 555–566 (2004). CASPubMed Google Scholar
Chang, S. et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol.24, 8467–8476 (2004). CASPubMedPubMed Central Google Scholar
Chang, S. et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell126, 321–334 (2006). References 151 and 153 report the unexpected phenotypes ofHdac4- andHdac7-null mice, thereby revealing the essential roles of these deacetylases in bone development and maintenance of vascular integrity, respectively. CASPubMed Google Scholar
Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell110, 479–488 (2002). CASPubMedPubMed Central Google Scholar