Pittenger, M. et al. Multilineage potential of adult human mesenchymal stem cells. Science284, 143–161 (1999). ArticleCASPubMed Google Scholar
Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science287, 1442–1446 (2000). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCASPubMed Google Scholar
Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell117, 663–676 (2004). ArticleCASPubMed Google Scholar
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature455, 627–632 (2008). ArticleCASPubMed Google Scholar
Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318, 1920–1923 (2007). ArticleCASPubMed Google Scholar
Loh, Y. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet.38, 431–440 (2006). ArticleCASPubMed Google Scholar
Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. An extended transcriptional network for pluripotency of embryonic stem cells. Cell132, 1049–1061 (2008). ArticleCASPubMed Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). ArticleCASPubMed Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). ArticleCASPubMed Google Scholar
Mitsui, K. et al. The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCASPubMed Google Scholar
Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature444, 364–368 (2006). This study derives a high-confidence protein–protein interaction network in ES cells centred around the transcription factor NANOG. CAS Google Scholar
Muller, F.-J. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature455, 401–405 (2008). This study uses innovative computational techniques to derive an extended network for stem cell pluripotency. ArticlePubMedPubMed CentralCAS Google Scholar
Alon, U. An introduction to systems biology: design principles of biological circuits (Chapman & Hall/CRC, Boca Raton, 2007). Google Scholar
Sontag, E. Mathematical control theory (Springer, New York, 1998). Book Google Scholar
Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos (Springer, New York, 2003). Google Scholar
McQuarrie, D. & Allan, D. Statistical mechanics (University Science Books, Sausalito, 2000). Google Scholar
Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCASPubMed Google Scholar
Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nature Genet.31, 370–378 (2002). ArticleCASPubMed Google Scholar
Shen-Orr, S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet.31, 64–68 (2002). ArticleCASPubMed Google Scholar
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133, 1106–1117 (2008). ArticleCASPubMed Google Scholar
Spooncer, E. et al. Developmental fate determination and marker discovery in hematopoietic stem cell biology using proteomic fingerprinting. Mol. Cell. Proteomics7, 573–581 (2008). ArticleCASPubMed Google Scholar
Hinsby, A. M., Olsen, J. V. & Mann, M. Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J. Biol. Chem.279, 46438–46447 (2004). ArticleCASPubMed Google Scholar
Harary, F. Graph theory (Westview, Boulder, 1994). Google Scholar
Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol.2, 908–916 (2001). ArticleCAS Google Scholar
Ma'ayan, A. et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science309, 1078–1083 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bromberg, K. D., Ma'ayan, A., Neves, S. R. & Iyengar, R. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science320, 903–909 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rual, J.-F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178 (2005). ArticleCASPubMed Google Scholar
Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science307, 1621–1625 (2005). ArticleCASPubMed Google Scholar
Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nature Genet.37, 382–390 (2005). ArticleCASPubMed Google Scholar
Ma'ayan, A. Network integration and graph analysis in mammalian molecular systems biology. IET Syst. Biol.2, 206–221 (2008). ArticleCASPubMed Google Scholar
Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. How to infer gene networks from expression profiles. Mol. Syst. Biol.3, 78 (2007). ArticlePubMedPubMed Central Google Scholar
D'haeseleer, P., Liang, S. & Somogyi, R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics16, 707–726 (2000). ArticleCASPubMed Google Scholar
Berger, S., Posner, J. & Ma'ayan, A. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics8, 372 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102, 15545–15550 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jiang, J. et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biol.10, 353–360 (2008). ArticlePubMedCAS Google Scholar
Singh, S. K., Kagalwala, M. N., Parker-Thornburg, J., Adams, H. & Majumder, S. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature453, 223–227 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cole, M., Johnstone, S., Newman, J., Kagey, M. & Young, R. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCASPubMedPubMed Central Google Scholar
Liu, X. et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res.18, 1177–1189 (2008). ArticleCASPubMed Google Scholar
Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134, 521–533 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mackay, J. P., Sunde, M., Lowry, J. A., Crossley, M. & Matthews, J. M. Protein interactions: is seeing believing? Trends Biochem. Sci.32, 530–531 (2007). ArticleCASPubMed Google Scholar
Ji, H., Vokes, S. A. & Wong, W. H. A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res.34, e146 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Ulitsky, I. & Shamir, R. Identification of functional modules using network topology and high-throughput data. BMC Syst. Biol.1, 8 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Mathur, D. et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol.9, R126 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). ArticleCASPubMed Google Scholar
Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev.23, 837–848 (2009). ArticleCASPubMedPubMed Central Google Scholar
Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nature Methods6, 83–90 (2009). ArticleCASPubMed Google Scholar
Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature428, 427–431 (2004). ArticleCASPubMed Google Scholar
Ding, L. et al. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell4, 403–415 (2009). ArticleCASPubMed Google Scholar
Mogilner, A., Wollman, R. & Marshall, W. F. Quantitative modeling in cell biology: what is it good for? Dev. Cell11, 279–287 (2006). ArticleCASPubMed Google Scholar
Wilkinson, D. J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nature Rev. Genet.10, 122–133 (2009). ArticleCASPubMed Google Scholar
Hasty, J., McMillen, D., Isaacs, F. & Collins, J. J. Computational studies of gene regulatory networks: in numero molecular biology. Nature Rev. Genet.2, 268–279 (2001). ArticleCASPubMed Google Scholar
Kauffman, S. A. The origins of order: self-organization and selection in evolution (Oxford Univ. Press, 1993). Google Scholar
Huang, A., Hu, L., Kauffman, S., Zhang, W. & Shmulevich, I. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation. BMC Syst. Biol.3, 20 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Bar-Yam, Y., Harmon, D. & de Bivort, B. Systems biology: attractors and democratic dynamics. Science323, 1016–1017 (2009). ArticleCASPubMed Google Scholar
Chang, H., Oh, P., Ingber, D. & Huang, S. Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol.7, 11 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Huang, S. & Ingber, D. A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis.26, 27–54 (2007). Article Google Scholar
Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nature Rev. Genet.10, 336–342 (2009). ArticleCASPubMed Google Scholar
Enver, T., Pera, M., Peterson, C. & Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell4, 387–397 (2009). ArticleCASPubMed Google Scholar
Delbruck, M. in Unités biologiques douées de continuité génétique 33–35 (Editions du Centre National de la Recherche Scientifique, Paris, 1949). Google Scholar
Thomas, R. Laws for the dynamics of regulatory networks. Int. J. Dev. Biol.42, 479–485 (1998). CASPubMed Google Scholar
Waddington, C. Organisers & genes (Cambridge Univ. Press, Cambridge, UK, 1940). Google Scholar
Waddington, C. The strategy of the genes. (George Allen & Unwin, London,1957). Google Scholar
Waddington, C. H. in The Development of Animal Behavior: a Reader (eds Bolhuis, J. J. & Hogan, J. A.) 22 (Blackwell, Oxford, 1999). Google Scholar
Milnor, J. On the concept of attractor. Commun. Math. Phys.99, 177–195 (1985). Article Google Scholar
Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Westview, Boulder, 2000). Google Scholar
Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature224, 177–178 (1969). ArticleCASPubMed Google Scholar
MacArthur, B. D., Please, C. P. & Oreffo, R. O. C. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS ONE3, e3086 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Chickarmane, V., Troein, C., Nuber, U. A., Sauro, H. M. & Peterson, C. Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol.2, e123 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Cinquin, O. & Demongeot, J. High-dimensional switches and the modelling of cellular differentiation. J. Theor. Biol.233, 391–411 (2005). ArticleCASPubMed Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). This paper provides evidence of coexisting mammalian attractor states and switching between coexisting attractors at the single cell level owing to transcriptome-wide fluctuations in protein expression levels. ArticleCASPubMedPubMed Central Google Scholar
Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett.94, 128701 (2005). This study provides the first experimental evidence that a mammalian cell type corresponds to a high-dimensional attractor of an underlying dynamical system. ArticlePubMedCAS Google Scholar
Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature426, 460–465 (2003). ArticleCASPubMed Google Scholar
Becskei, A., Séraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J.20, 2528–2535 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ferrell, J. E. Jr & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science280, 895–898 (1998). ArticleCASPubMed Google Scholar
Graf, T. & Stadtfeld, M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell3, 480–483 (2008). ArticleCASPubMed Google Scholar
Sigal, A. et al. Variability and memory of protein levels in human cells. Nature444, 643–646 (2006). ArticleCASPubMed Google Scholar
Till, J. E., McCulloch, E. A. & Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl Acad. Sci. USA51, 29–36 (1964). ArticleCASPubMedPubMed Central Google Scholar
Suda, T., Suda, J. & Ogawa, M. Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc. Natl Acad. Sci. USA81, 2520–2524 (1984). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, M., Porter, P. & Nakahata, T. Renewal and commitment to differentiation of hemopoietic stem cells (an interpretive review). Blood61, 823–829 (1983). ArticleCASPubMed Google Scholar
Suda, T., Suda, J. & Ogawa, M. Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc. Natl Acad. Sci. USA80, 6689–6693 (1983). ArticleCASPubMedPubMed Central Google Scholar
Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA99, 12795–12800 (2002). ArticleCASPubMedPubMed Central Google Scholar
Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nature Rev. Genet.7, 34–44 (2006). ArticleCASPubMed Google Scholar
Szutorisz, H., Georgiou, A., Tora, L. & Dillon, N. The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell127, 1375–1388 (2006). ArticleCASPubMed Google Scholar
Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet.6, 451–464 (2005). ArticleCASPubMed Google Scholar
Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature441, 840–846 (2006). ArticleCASPubMed Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230–1234 (2007). This study shows that NANOG expression fluctuates in ES cells and that it provides a temporary predisposition towards cell differentiation. ArticleCASPubMed Google Scholar
Feng, B. et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biol.11, 197–203 (2009). ArticleCASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASPubMed Google Scholar
Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol.26, 101–106 (2008). ArticleCAS Google Scholar
Wernig, M., Meissner, A., Cassady, J. P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2, 10–12 (2008). ArticleCASPubMed Google Scholar
Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321, 699–702 (2008). ArticleCASPubMed Google Scholar
Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008). ArticleCASPubMed Google Scholar
Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell136, 411–419 (2009). ArticleCASPubMed Google Scholar
Maherali, N. et al. directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. CellStem Cell1, 55–70 (2007). CAS Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASPubMed Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCASPubMed Google Scholar
Hemberger, M., Dean, W. & Reik, W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nature Rev. Mol. Cell Biol.10, 526–537 (2009). ArticleCAS Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature442, 533–538 (2006). ArticleCASPubMed Google Scholar
Daheron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells22, 770–778 (2004). ArticleCASPubMed Google Scholar
Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol.19, 5453–5465 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev.9, 2635–2645 (1995). ArticleCASPubMed Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA96, 8705–8710 (1999). ArticleCASPubMedPubMed Central Google Scholar
van den Berg, D. L. C. et al. Estrogen-related receptor β interacts with Oct4 To positively regulate Nanog gene expression. Mol. Cell. Biol.28, 5986–5995 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Zhang, J., Wang, T., Esteban, M. A. & Pei, D. Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells. J. Biol. Chem.283, 35825–35833 (2008). ArticleCASPubMed Google Scholar